1. Возрастание и убывание функции.

Для того чтобы дифференцируемая на интервале (a,b) функция f(x) была возрастающей на этом интервале, необходимо и достаточно, чтобы выполнялось условие

$$f'(x) \ge 0$$
 при всех $x \in (a,b)$.

Аналогично, условие

$$f'(x) \le 0$$
 при всех $x \in (a,b)$

является необходимым и достаточным для убывания дифференцируемой на интервале (a,b) функции f(x).

Примеры

- **1.1.** Доказать, что функция $y = \sinh x$ строго возрастает на **R**.
- Так как

$$(\operatorname{sh} x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \operatorname{ch} x > 0,$$

то для всех $x \in \mathbf{R}$ функция $\operatorname{sh} x$ является строго возрастающей на \mathbf{R} .

- **1.2.** Доказать, что если $0 < x < \frac{\pi}{2}$, то $\sin x > \frac{2}{\pi}x$.
- Пусть $f(x) = \frac{\sin x}{x}$, тогда f(0) = 1. Эта функция дифференцируема на интервале $\left(0, \frac{\pi}{2}\right)$, причем

$$f'(x) = \frac{\cos x}{x^2} (x - \operatorname{tg} x) < 0,$$

то для всех $x \in \left(0, \frac{\pi}{2}\right)$ функция $f\left(x\right)$ строго убывает на интервале $\left(0, \frac{\pi}{2}\right)$.

Поэтому
$$f(x) > f\left(\frac{\pi}{2}\right) = \frac{2}{\pi}$$
 для всех $x \in \left(0, \frac{\pi}{2}\right)$.

То есть выполнено

$$\frac{\sin x}{x} > \frac{2}{\pi} \iff \sin x > \frac{2}{\pi} x. \blacktriangleleft$$

2. Экстремумы функции.

Необходимое условие экстремума.

Точки экстремума функции f(x) следует искать среди тех точек области определения, в которых производная этой функции либо равна нулю, либо не существует. Точки, в которых производная данной функции равна нулю, называет стационарными точками этой функции, а точки, в которых функция непрерывна, а её производная либо равна нулю либо не существует,— ее критическими точками.

Достаточные условие экстремума.

- 1) Если f'(x) меняет знак с минуса на плюс при переходе через точку x_0 , то x_0 точка строгого минимума функции f(x). Если f'(x) меняет знак с плюса на минус при переходе через точку x_0 , то x_0 точка строгого максимума функции f(x).
- 2) Пусть $f'(x_0) = 0$ и существует вторая производная $f''(x_0)$. Тогда, если $f''(x_0) > 0$, то x_0 точка строгого минимума функции f(x). Если $f''(x_0) < 0$, то x_0 точка строгого максимума функции f(x).

Примеры

2.1. Найти точки экстремума функции

$$f(x) = (x-2)^2 (x+1)^3$$
.

 \blacksquare Функция дифференцируема на ${\bf R}$, поэтому все её точки экстремума содержатся среди стационарных точек функции, являющихся корнями уравнения f'(x) = 0, т.е. уравнения

$$f'(x) = (x-2)(x+1)^2(5x-4) = 0$$

которое имеет корни $x_1 = -1$, $x_2 = \frac{4}{5}$, $x_3 = 2$. Для удобства составим таблицу:

x	f'(x)	f(x)
$(-\infty,-1)$	+	возрастает
-1	0	
$\left(-1,\frac{4}{5}\right)$	+	возрастает
$\frac{4}{5}$	0	max
$\left(\frac{4}{5},2\right)$	_	убывает
2	0	min
$(2,+\infty)$	+	возрастает

Из таблицы видно, что $x_2 = \frac{4}{5}$, $x_3 = 2$ - точки строгого максимума и минимума, а $x_1 = -1$ не является точкой экстремума.

2.2. Найти точки экстремума функции

$$f(x) = |x^2 - 4|e^{-|x|}$$
.

■ Прежде всего, отметим, что функция f(x) — четная, непрерывная на \mathbf{R} , дифференцируемая на \mathbf{R} , кроме точек -2,0,2. Эквивалентное представление функции

$$f(x) = \begin{cases} (x^2 - 4)e^x & x < -2 \\ -(x^2 - 4)e^x & -2 \le x < 0 \\ -(x^2 - 4)e^{-x} & 0 \le x < 2 \end{cases}.$$
$$(x^2 - 4)e^{-x} \quad x \ge 2$$

Производная функции f(x) равна

$$f'(x) = \begin{cases} (x^2 - 2x + 4)e^x & x < -2 \\ -(x^2 - 2x + 4)e^x & -2 \le x < 0 \\ (x^2 - 2x + 4)e^{-x} & 0 \le x < 2 \\ (-x^2 + 2x + 4)e^{-x} & x \ge 2 \end{cases}$$

критическими точками которой будут $x_{1,2}=\pm 2$, $x_3=0$, $x_{4,5}=\pm \left(1+\sqrt{5}\right)$.

Составим таблицу

x	f'(x)	f(x)
$\left(-\infty,-1-\sqrt{5}\right)$	+	возрастает
$-1-\sqrt{5}$	0	max
$\left(-1-\sqrt{5},-2\right)$	_	убывает
-2	не существует	min
(-2,0)	+	убывает
0	не существует	max
(0,2)	_	убывает
2	не существует	min
$\left(2,1+\sqrt{5}\right)$	+	возрастает
$1+\sqrt{5}$	0	max
$(1+\sqrt{5},+\infty)$	_	убывает

Используя полученные результаты, получаем: x=-2 и x=2 — точки строгого минимума функции f(x), $x=-\left(1+\sqrt{5}\right)$, x=0 и $x=1+\sqrt{5}$ — точки строгого максимума этой функции.

3. Наибольшее и наименьшее значения функции.

Пусть функция f(x) непрерывна на отрезке [a,b] и имеет максимумы в точках x_1, x_2, \ldots, x_k и минимумы в точках x_1', x_2', \ldots, x_m' и не имеет других точек экстремума. Тогда наибольшее значение функции f(x) на отрезке [a,b] равно наибольшему из чисел $f(a), f(x_1), f(x_2), \ldots, f(x_k), f(b)$, а наименьшее этой функции на отрезке [a,b] равно наименьшему из чисел $f(a), f(x_1'), f(x_2'), \ldots, f(x_k'), f(b)$.

Примеры

3.1. Найти наибольшее и наименьшее значение функции

$$f(x) = (x-2)^2 (x+1)^3$$

на отрезке [0,3].

■ Как следует из примера **2.1.** функция f(x) на отрезке [0,3] имеет строгий максимум в точке $x = \frac{4}{5}$ и строгий минимум в точке x = 2. Следовательно, наибольшее значение функции f(x) на отрезке [0,3] равно

$$\max \left\{ f(0), f\left(\frac{5}{4}\right), f(3) \right\} = f(3) = 64,$$

а наименьшее

$$\min\{f(0), f(2), f(3)\} = f(2) = 0.$$

3.2. Найти наибольшее и наименьшее значение функции

$$f(x) = |x^2 - 4|e^{-|x|}$$

на отрезке [0,4].

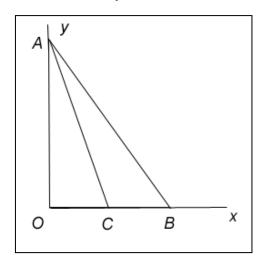
■ Как следует из примера **2.2.** функция f(x) на отрезке [0,4] имеет строгий максимум в точках x=0 и $x=1+\sqrt{5}$ и строгий минимум в точке x=2. Следовательно, наибольшее значение функции f(x) на отрезке [0,4] равно

$$\max \{f(0), f(1+\sqrt{5}), f(4)\} = f(0) = 64,$$

а наименьшее

$$\min\{f(0), f(2), f(4)\} = f(2) = 0.$$

- **3.3.** Корабль стоит на якоре в 10 км от ближайшей точки берега, матросу необходимо добраться до лагеря расположенного в 15 км вдоль берега. В каком точке берега должен пристать матрос, чтобы попасть в лагерь в ближайшее время? Скорость матроса на веслах 4 км/час, пешком 5 км/час.
 - Свяжем условие задачи с декартовой системой координат. Пусть корабль



находится в точке A(0,10), лагерь в точке B(15,0), точка C(x,0) - место высадки матроса. Тогда суммарное время, необходимое матросу, для того, чтобы добраться из A в B будет равно

$$t = t_{AC} + t_{CB} = \frac{\left|AC\right|}{4} + \frac{\left|CB\right|}{5}.$$

Таким образом задача сводится к нахождению минимума функции

$$t = t(x) = \frac{\sqrt{x^2 + 100}}{4} + \frac{15 - x}{5}$$
.

Находя производную, получаем

$$t' = t'(x) = \frac{x}{4\sqrt{x^2 + 100}} - \frac{x}{5}$$
.

Решая уравнение t'(x) = 0, находим стационарную точку $x_C = \frac{40}{3}$.

Следовательно, наименьшее значение функции на отрезке [0,15] равно

$$\min\left\{t\left(0\right),t\left(\frac{40}{3}\right),t\left(15\right)\right\}=t\left(\frac{40}{3}\right)=4,5.\blacktriangleleft$$

3.4. Из сектора радиуса R свертывается конус. При каком центральном угле α он имеет наибольший объем?

■ Объем конуса вычисляется по формуле $V = \frac{1}{3}Sh$, где S - площадь круга - основания конуса, h - его высота. Пусть l - длина окружности основания конуса, очевидно, она равна длине дуги исходного сектора, т.е. $l = R\alpha$ и $S = \frac{l^2}{4\pi} = \frac{R^2\alpha^2}{4\pi}$. Высота полученного конуса равна

$$h = \sqrt{R^2 - \frac{l^2}{4\pi^2}} = \sqrt{R^2 - \frac{R^2\alpha^2}{4\pi^2}},$$

а его объем, как функция угла а

$$V(\alpha) = \frac{R^3}{24\pi^2} \alpha^2 \sqrt{4\pi^2 - \alpha^2}.$$

Найдем стационарные точки функции $V(\alpha)$. Находя производную

$$V'(\alpha) = \frac{R^3}{24\pi^2} \left[2\alpha\sqrt{4\pi^2 - \alpha^2} - \frac{\alpha^3}{\sqrt{4\pi^2 - \alpha^2}} \right],$$

и решая уравнение $V'(\alpha) = 0$, получаем $\alpha = 2\pi \sqrt{\frac{2}{3}}$. Нетрудно убедиться, что при данном значении угла, объем конуса будет максимальным.

- **3.5.** Найти положительное число, сумма которого и обратного к нему является наименьшей.
- Обозначим искомое число через x. Исследуем функцию

$$f(x) = x + \frac{1}{x}; \quad x > 0.$$

Вычислим производную: $f'(x) = \frac{x^2 - 1}{x^2}$.

Производная имеет смысл для всех x, кроме x=0. Критические точки функции: $x=\pm 1$; x=0. Так как число положительное, имеем лишь одну точку для решения: x=1. Найдём значение функции для x=1. Слева от точки x=1 производная отрицательная, справа — положительная. Значит, точка x=1 точка минимума.

Используем второе достаточное условие экстремума. Для этого найдём вторую производную:

$$f''(x) = \frac{2}{x^3}.$$

Найдём значение второй производной в критической точке x = 1: f''(1) = 2 > 0. Следовательно, это значение наименьшее. Поэтому: x = 1. ◀

- **3.6.** Во дворе детского садика надо огородить прямоугольной формы цветник, прилегающий к забору, длина которого больше 40 метров. Есть 200 плит, каждая из которых имеет длину 40 см. Каким должны быть размеры цветника, чтобы его площадь была наибольшей?
- Пусть y длина одной стороны цветника, параллельной забору, x длина смежной стороны цветника. Тогда: s = xy. По условию задачи длина изгороди: $200 \cdot 0, 4 = 80$ м. Следовательно,

$$y + 2x = 80;$$

 $y = 80 - 2x;$
 $s = x(80 - 2x) = 80x - 2x^{2};$
 $0 \le x \le 40.$

Найдём критические точки функции s'(x) = 80 - 4x.

$$80 - 4x = 0;$$
$$x = 20.$$

Найдём наибольшее значение функции $s = 80x - 2x^2$ на отрезке [0;40].

$$s(20) = 80 \cdot 20 - 2 \cdot 20^2 = 1600 - 800 = 800;$$

 $s(0) = 0;$
 $s(40) = 80 \cdot 40 - 2 \cdot 1600 = 0.$

Получили, что наибольшее значение функции при x = 20.

Таким образом, цветник будет иметь наибольшую площадь, если сторона, прилегающая к забору, вдвое больше другой.

Найдём вторую производную:

$$s''(x) = s''(20) = -4 < 0$$
.

Так как вторая производная отрицательная, значит, x = 20 - точка максимума.

4

- **3.7.** Из пункта А в направлении к пункту В отправляется грузовой автомобиль со скоростью 50 км/ч. Одновременно из пункта В со скоростью 60 км/ч отправляется автобус в направлении, перпендикулярном АВ. В какой момент времени от начала движения расстояние между машинами будет наибольшим,
- В момент времени t расстояние между машинами равно EC.

50t – расстояние, которое прошла грузовая машина. Тогда:

$$BC = 200 - 50t$$
; $BE = 60t$.

∆АВС- прямоугольный. Применяя теорему Пифагора, имеем:

$$s(t) = CE = \sqrt{BC^2 + BE^2} = \sqrt{(200 - 50t)^2 + (60t)^2} =$$
$$= \sqrt{40000 - 20000t + 2500t^2 + 3600t^2}.$$

Так как машины двигались не меньше 4 часов, то искать наименьшее значение функции будем на отрезке [0;4].

Найдём производную

$$s'(t) = \frac{\left(40000 - 20000t + 6100t^2\right)'}{2\sqrt{40000 - 20000t + 6100t^2}} = \frac{-20000 + 122000t}{2\sqrt{40000 - 20000t + 6100t^2}} = \frac{-10000 + 6100t}{\sqrt{40000 - 20000t + 6100t^2}}.$$

Найдём критические точки функции:

$$s'(t) = 0$$
; $61000t = 10000$; $t = 0,16$ ч. $0,16 \cdot 60 = 9,6$ минуты.

Найдём значения функции в критических точках:

Пандем значения функции в критических точках:
$$s(0) = \sqrt{40000 + 3600} = \sqrt{7600} \approx 87.$$

$$s(4) = \sqrt{\left(200 - 50 \cdot 4\right)^2 + \left(60 \cdot 4\right)^2} \approx 15;$$

$$s(0,16) = \sqrt{\left(200 - 50 \cdot 0,16\right)^2 + \left(60 \cdot 4\right)^2} \approx 192 \text{ в момент времени } t = 0,16 \text{ часа.} \blacktriangleleft$$

3.8. На малом предприятии производят продукцию одного вида. Затраты на производство x единицы (в у. е.) выражаются формулой:

$$v(x) = x^3 - 20x^2 + 150x + 100$$
.

Доход, полученный от её реализации:

$$D(x) = 115x - x^2$$
.

Определите, какое количество продукции надо произвести, чтобы прибыль от её реализации была максимальной?

■ Прибыль от реализации товара определяется разностью между доходом и затратами:

$$P(x) = D(x) - V(x).$$

Для нашей задачи:

$$P(x) = 115x - x^2 - x^3 + 20x^2 - 150x - 1000 = -x^3 + 19x^2 - 35x - 1000$$
.

Для нахождения точки максимума функции P применим необходимое условие существования экстремума функции:

$$P' = 0$$
 или $D' - V' = 0$.

Последнее условие имеет экономический смысл: для того, чтобы прибыль была максимальной, необходимо, чтобы предельный доход $\ddot{A}' = V'$.

$$P' = -3x^{2} + 38x - 35 = 0;$$

$$D = 1444 - 420 = 1024;$$

$$\sqrt{D} = 32;$$

$$x_{1} = \frac{-38 - 32}{-6} \approx 11,7;$$

$$x_{2} = \frac{-38 + 32}{-6} = 1.$$

Находим:

$$P(11,7) = -410,7 + 2600,9 - 1000 = 1181,9$$
 - наибольшая прибыль.

Значит, надо произвести 11,7 единиц продукции.

2способ (с помощью второй производной).

Найдём вторую производную:

$$P''(x) - 6x + 38;$$

Найдём значение второй производной в критических точках.

$$P''(11,7) = -70,2 + 38 = -32,2 < 0.$$

 $P''(1) = -6 + 38 = 32.$

Значит, прибыль в точке x = 11,7 максимальная.

Найдём значение максимальной прибыли:

$$P(11,7) = -410,7 + 2600,9 - 1000 = 1181,9.$$

- **3.9.** Требуется изготовить коническую воронку с образующей, равной 15 см. Какова должна быть высота воронки, чтобы её объём был наибольшим?
- Пусть H = x, тогда:

$$R^2 = 15^2 - x^2 = 225 - x^2$$
.

Объём:

$$V(x) = \pi (225 - x^2) x = \pi (225x - x^3).$$
$$V'(x) = 225\pi - 3\pi x^2;$$

Найдём критические точки функции:

$$V'(x) = 0;$$

$$225\pi - 3\pi x^{2} = 0;$$

$$x^{2} = \frac{225}{3};$$

$$x = \frac{15}{\sqrt{3}} = \frac{15\sqrt{3}}{3} = 5\sqrt{3}.$$

Получили, чтобы объём воронки с образующей 15 см был наибольшим, высота её должна быть равной $5\sqrt{3}$ см. \blacktriangleleft

4. Выпуклость функции и точки перегиба.

Достаточные условия выпуклости.

Пусть f'(x) существует на отрезке [a,b], а f''(x) — на интервале (a,b). Тогда: 1) если

$$f''(x) \ge 0$$
 при всех $x \in (a,b)$,

то функция y = f(x) выпукла вниз на отрезке [a,b].

2) если

$$f''(x) \le 0$$
 при всех $x \in (a,b)$,

то функция y = f(x) выпукла вверх на отрезке [a,b].

Необходимое условие наличия точки перегиба.

Если x_0 — точка перегиба функции $y=f\left(x\right)$ и если функция $y=f\left(x\right)$ имеет в некоторой окрестности точки x_0 вторую производную, непрерывную в точке x_0 , то

$$f''(x) = 0.$$

Достаточные условия наличия точки перегиба.

- 1) Если функция y = f(x) непрерывна в точке x_0 , имеет в этой точке конечную или бесконечную производную и если функция f''(x) меняет знак при переходе через точку x_0 , то x_0 точка перегиба функции y = f(x).
- 2) Если $f''(x_0) = 0$, $f'''(x) \neq 0$, то x_0 точка перегиба функции y = f(x).

Примеры

- **4.1.** Показать, что функции $y = \ln(x^2 1)$ выпукла вверх на всей области определения.
- Вычислим вторую производную

$$y'' = \left[\ln\left(x^2 - 1\right)\right]'' = \left[\frac{2x}{x^2 - 1}\right]' = -\frac{2(2x^2 + 1)}{\left(x^2 - 1\right)^2}.$$

Область определения функции

$$y = \ln\left(x^2 - 1\right)$$

множество $D = \{x : (-\infty, -1) \cup (1, +\infty)\}$. Очевидно, y'' < 0 для любых $x \in D[y]$.

5. Асимптоты.

Вертикальная асимптота.

Если выполнено хотя бы одно из условий

$$\lim_{x \to x_0 \to 0} f(x) = \pm \infty, \quad \lim_{x \to x_0 \to 0} f(x) = \pm \infty,$$

то прямую $x = x_0$ называют вертикальной асимптотой графика функции y = f(x).

Невертикальная асимптота.

Прямую

$$y = kx + b$$

называют невертикальной асимптотой графика функции y = f(x) при $x \to +\infty$, если

$$\lim_{x\to+\infty} (f(x)-(kx+b)) = 0.$$

Если $k \neq 0$, то асимптоту называют наклонной, а если k = 0, то асимптоту y = b называют горизонтальной.

Аналогично вводится понятие асимптоты при $x \to -\infty$.

Для того чтобы прямая y = kx + b была асимптотой графика функции y = f(x) при $x \to +\infty$, необходимо и достаточно, чтобы существовали конечные пределы

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k ,$$

$$\lim_{x\to+\infty} (f(x)-kx) = b.$$

Аналогично находится асимптота при $x \to -\infty$.

Исследование асимптот при $x \to +\infty$ и при $x \to -\infty$ как правило проводят отдельно.

В некоторых частных случаях возможно совместное исследование асимптот при $x \to +\infty$ и при $x \to -\infty$, например, для

- 1) рациональных функций;
- 2) четных и нечетных функций, для графиков которых исследование можно проводить на части области определения.

Следует отметить, что метод вычисления пределов для нахождения асимптот не позволяет оценить взаимное расположение графика функции и его асимптоты. Для определения взаимного положения графика и асимптоты можно пользоваться следующими правилами.

- 1) Если функция y = f(x) имеет асимптоту при $x \to +\infty$, дифференцируема и строго выпукла вниз на луче $x \ge x_0$, то график функции лежит выше асимптоты.
- 2) Если функция y = f(x) имеет асимптоту при $x \to +\infty$, дифференцируема и строго выпукла вверх на луче $x \ge x_0$, то график функции лежит ниже асимптоты.
- 3) Могут быть другие случаи поведения графика функции при стремлении к асимптоте. Например, возможно, что, график функции бесконечное число раз пересекает асимптоту.

Аналогичное утверждение справедливо и при $x \to -\infty$.

До исследования свойств выпуклости графика функции взаимное расположения графика функции и его асимптоты можно определить по знаку o(1) в методе выделения главной части.

<u>Метод выделения главной части.</u> Для нахождения асимптоты выделяем главную часть функции при $x \to +\infty$. Аналогично при $x \to -\infty$.

<u>Главную часть дробно рациональной функции</u> удобно находить, выделяя целую часть дроби.

<u>Главную часть иррациональной функции</u> при решении практических примеров удобно находить используя методы представления функции формулой Тейлора при $x \to +\infty$.

<u>Главную часть иррациональных функций вида</u> $f(x) = \sqrt{ax^2 + bx + c}$ и $f(x) = \sqrt[3]{ax^3 + bx^2 + cx + d}$ удобно находить соответственно методом выделения полного квадрата или полного куба подкоренного выражения.

Примеры

5.1. Найти асимптоты графика функции

$$f(x) = \frac{3x^2 + x - 5}{x + 2}.$$

■ Прямая x = -2 — вертикальная асимптота.

Наклонная асимптота. Найдем угловой коэффициент k и свободный член b по формулам

$$k_{+} = \lim_{x \to +\infty} \frac{f(x)}{x} = \frac{3x^{2} + x - 5}{x(x+2)} = 3,$$

$$k_{-} = \lim_{x \to -\infty} \frac{f(x)}{x} = \frac{3x^{2} + x - 5}{x(x+2)} = 3$$

$$b_{+} = \lim_{x \to +\infty} \left(f(x) - kx \right) = \lim_{x \to +\infty} \left(\frac{3x^{2} + x - 5}{x+2} - 3x \right) = -5$$

Таким образом, прямая y = 3x - 5 — наклонная асимптота.

Найдем асимптоту методом выделения главной части дробно-рациональной функции. Выполняя деление «столбиком», получаем

$$3x^{2} + x - 5 | x + 2$$

$$3x^{2} + 6x | 3x - 5$$

$$-5x - 5$$

$$-5x - 10$$

To есть,
$$\frac{3x^2 + x - 5}{x + 2} = 3x - 5 + \frac{5}{x + 2} = 3x - 5 + o(1)$$
.

Таким образом, прямая y = 3x - 5 — наклонная асимптота. ◀

5.2. Найти асимптоты линии

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
.

■ Вертикальных и горизонтальных асимптот нет.

Выражая уравнение линии в явном виде

$$y = \pm \frac{b}{a} \sqrt{x^2 - 1} .$$

Тогда

$$k_{\pm} = \pm \frac{b}{a} \lim_{x \to \pm \infty} \frac{\sqrt{x^2 - 1}}{x} = \pm \frac{b}{a},$$

$$b_{\pm} = \pm \frac{b}{a} \lim_{x \to \pm \infty} \left(\sqrt{x^2 - 1} - x \right) = 0.$$

В итоге имеем 2 наклонных асимптоты: $y = \pm \frac{b}{a}x$.

5.3. Найти асимптоты линии

$$y^3 = 6x^2 + x^3$$
.

■ Выразим уравнение линии в явном виде

$$y = \sqrt[3]{6x^2 + x^3}$$
.

Так как

$$y = \sqrt[3]{6x^2 + x^3} = x\sqrt[3]{1 + \frac{6}{x}} = x\left(1 + \frac{2}{x} + o(x)\right),$$

то прямая y = x + 2 - наклонная асимптота. ◀

5.4. Найти асимптоты функции:

$$y = \frac{\left(x^3 - 2x^2 - 3x + 2\right)}{\left(1 - x^2\right)}$$

■Так как функция не определена в точках $x = \pm 1$, то $x = \pm 1$ - вертикальные асимптоты.

Найдём наклонную асимптоту: угловой коэффициент прямой k и число b найдём, применяя формулы:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}; \quad b = \lim_{x \to \pm \infty} (f(x) - kx).$$

$$k = \lim_{x \to \infty} \frac{\left(x^3 - 2x^2 - 3x + 2\right)}{\left(1 - x^2\right)x} = -1, \qquad b = \lim_{x \to \infty} \frac{\left(x^3 - 2x^2 - 3x + 2\right) - x^3 + x}{\left(1 - x^2\right)} = 2.$$

Получили: y = -x + 2 - наклонная асимптота. ◀

- **5.5.** Найти наклонную асимптоту графика функции $f(x) = \frac{\sqrt{x^4 + 3x 1}}{x 4}$.
- Так как

$$f(x) = \frac{\sqrt{x^4 + 3x - 1}}{x - 4} = x\sqrt{1 + \frac{3}{x^3} - \frac{1}{x^4}} \cdot \left(1 - \frac{4}{x}\right)^{-1},$$

то по формуле Тейлора получаем

$$f(x) = x \left(1 + \frac{4}{x} + o\left(\frac{1}{x}\right)\right) = x + 4 + o(1)$$

и прямая y = x + 4 является искомой асимптотой. \blacktriangleleft

- **5.6.** Найти наклонные асимптоты графика функции $f(x) = \sqrt{x^2 6x + 14}$ при $x \to +\infty$ и $x \to -\infty$.
- В подкоренном выражении выделим полный квадрат

$$f(x) = \sqrt{x^2 - 6x + 14} = \sqrt{(x-3)^2 + 5}$$
.

Так как график функции f(x) симметричен относительно прямой x = 3 и

$$f(x) = \sqrt{(x-3)^2 + 5} = |x-3| \sqrt{1 + \frac{5}{(x-3)^2}}$$

то $f(x) \sim |x-3|$ при $x \to +\infty$. Значит, прямая y = x-3 является асимптотой при $x \to +\infty$, а прямая y = -x+3 — асимптотой при $x \to -\infty$.

6. Построение графиков функций.

При построении графика функции y = f(x) удобно следовать следующей схеме.

- 1) Область определения функции.
- 2) Четность (нечетность), периодичность функции.
- 3) Точки пересечения графика с осями координат и промежутки, на которых f(x) > 0 и f(x) < 0.

- 4) Стационарные и критические точки, промежутки возрастания и убывания функции, экстремумы.
- 5) Возможные точки перегиба, промежутки выпуклости вверх (вниз) функции.
- 6) Асимптоты графика.
- 7) График функции.

Примеры

6.1. Исследовать функцию

$$y = x^2 \left(x - 4 \right)^2$$

и построить её график.

- 1) Область определения функции: $x \in (-\infty; +\infty)$. Точек разрыва нет.
- 2) Функция общего вида (т.е. ни нечетная, ни четная, непериодическая), т.к. $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, $f(x) \neq f(x+T)$ при $T \neq 0$.
 - 3) Найдём точки пересечения графика функции с осями координат.

C осью
$$Ox: x^2(x-4)^2 = 0 \Rightarrow$$
точки $O(0,0)$ и $M(4,0)$.

С осью Oy: точка O(0,0).

На всей области определения $x \in \square$ функция $f(x) \ge 0$.

4) Найдём стационарные точки. Так как

$$y' = (x^2(x-4)^2)' = (x^4 - 8x^3 + 16x^2)' = 4x^3 - 24x^2 + 32x$$

то решая уравнение

$$x^3 - 6x^2 + 8x = 0,$$

получаем $x_1 = 0$, $x_2 = 2$, $x_3 = 4$

Составим таблицу знаков производной и поведения функции.

x	f'(x)	f(x)
$(-\infty,0)$	_	убывает
0	0	min

		f(x) = 0
(0,2)	+	возрастает
2	0	$\max f(x) = 16$
(2,4)	_	убывает
4	0	$\min f(x) = 0$
$(4,+\infty)$	+	возрастает

5) Найдем возможные точки перегиба. Так как

$$y'' = \left(x^2(x-4)^2\right)'' = \left(4x^3 - 24x^2 + 32x\right)' = 12x^2 - 48x + 32,$$

то решением уравнения y'' = 0 будет $x_{1,2} = 2 \pm \frac{2\sqrt{3}}{3}$.

Составим таблицу знаков второй производной

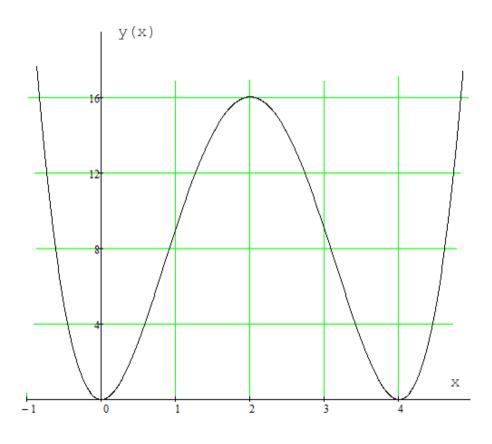
X	f''(x)	f(x)
$\left(-\infty, 2 - \frac{2\sqrt{3}}{3}\right)$	+	выпукла вниз
$2 - \frac{2\sqrt{3}}{3}$	0	точка перегиба $f(x) = \frac{64}{9}$
$\left(2-\frac{2\sqrt{3}}{3},2+\frac{2\sqrt{3}}{3}\right)$	_	выпукла вверх
$2 + \frac{2\sqrt{3}}{3}$	0	точка перегиба $f(x) = \frac{64}{9}$
$\left(2+\frac{2\sqrt{3}}{3},+\infty\right)$	+	выпукла вниз

6) Так как у исследуемой функции нет точек разрыва и

$$k_{\pm} = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2(x-4)^2}{x} = \infty,$$

то асимптот у графика нет.

7) Используя данные, полученные в п.п. 1-6, построим график функции.



6.2. Исследовать функцию

$$y = \sqrt[3]{4x(x-1)}$$

и построить её график.

- 1) Область определения функции: $x \in (-\infty; +\infty)$. Точек разрыва нет.
- 2) Функция общего вида (т.е. ни нечетная, ни четная, непериодическая), т.к. $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, $f(x) \neq f(x+T)$ при $T \neq 0$.
 - 3) Найдём точки пересечения графика функции с осями координат.

С осью $Ox: \sqrt[3]{4x(x-1)} = 0 \Rightarrow$ точки O(0,0) и M(1,0).

C осью Oy: точка O(0,0).

Функция f(x) > 0 при $x \in (-\infty, 0) \cup (1, +\infty)$ и f(x) < 0 при $x \in (0, 1)$.

4) Найдём стационарные точки. Так как

$$y' = (\sqrt[3]{4x(x-1)})' = \sqrt[3]{\frac{4}{x^2(x-1)^2}} \frac{(2x-1)}{3},$$

то решая уравнение y' = 0, получаем стационарную точку $x = \frac{1}{2}$. Кроме того, имеются две критических точки x = 0 и x = 1 в которых производная бесконечна.

Составим таблицу знаков производной и поведения функции.

X	f'(x)	f(x)
$(-\infty,0)$	-	убывает
0	∞	экстремума нет $f(x) = 0$
$\left(0,\frac{1}{2}\right)$	_	возрастает
$\frac{1}{2}$	0	$\min f(x) = -1$
$\left(\frac{1}{2},1\right)$	+	возрастает
1	+∞	экстремума нет $f(x) = 0$
(1,+∞)	+	возрастает

5) Найдем возможные точки перегиба. Так как

$$y'' = \left(x^{2}(x-4)^{2}\right)'' = \left(\sqrt[3]{\frac{4}{x^{2}(x-1)^{2}}} \frac{(2x-1)}{3}\right)' = \frac{2\sqrt[3]{4x(x-1)}(x^{2}-x+1)}{9x^{2}(x-1)^{2}},$$

то возможными точками перегиба будут точки x = 0 и x = 1.

Составим таблицу знаков второй производной

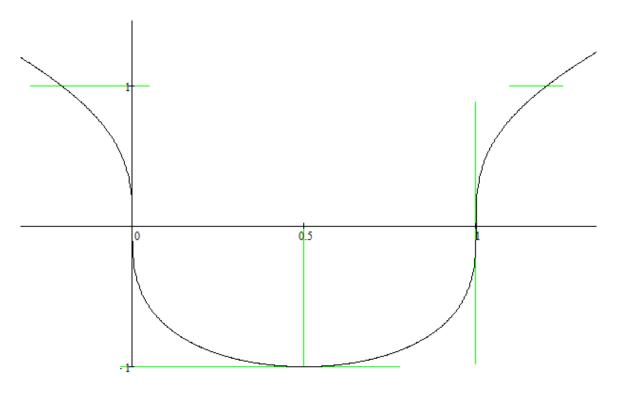
x	f''(x)	f(x)
$(-\infty,0)$	_	выпукла вверх
0	не существует	точка перегиба $f(x) = 0$
(0,1)	+	выпукла вниз
1	не существует	точка перегиба $f(x) = 0$
(1,+∞)	_	выпукла вверх

6) Найдём асимптоты. Так как точек разрыва нет, и

$$k = \lim_{x \to \infty} \left(\frac{\sqrt[3]{4x(x-1)}}{x} \right) = \infty,$$

то асимптот у графика функции нет.

7)



6.3. Исследовать функцию и построить её график.

$$y = \frac{4}{x^2 + 2x - 3}.$$

- 1) Область определения функции: $(-\infty; -3) \cup (-3; 1) \cup (1; +\infty)$.
- 2) Функция общего вида (т.е. ни нечетная, ни четная, непериодическая), т.к. $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, $f(x) \neq f(x+T)$ при $T \neq 0$.
 - 3) Найдём точки пересечения графика функции с осями координат.

C осью $Ox: \frac{4}{x^2 + 2x - 3} = 0 \Rightarrow$ точек пересечения нет.

С осью Oy: точка $M\left(0, -\frac{4}{3}\right)$.

Функция f(x) > 0 при $x \in (-\infty, -3) \cup (1, +\infty)$ и f(x) < 0 при $x \in (-3, 1)$.

4) Найдем стационарные точки. Так как

$$y' = \frac{4(2x+2)}{(x^2+2x-3)^2},$$

то решая уравнение y' = 0, получаем стационарную точку x = -1. Кроме того, имеются две критических точки x = -3 и x = 1 в которых производная не существует.

Составим таблицу знаков производной и поведения функции.

x	f'(x)	f(x)
$(-\infty, -3)$	+	возрастает
-3	не существует	разрыв 2 рода
(-3,-1)	+	возрастает
-1	0	точка максимума $f(x) = -1$
(-1,1)	_	убывает
1	не существует	разрыв 2 рода
(1,+∞)	_	убывает

5) Найдем возможные точки перегиба. Так как

$$y'' = -8 \frac{3x^2 + 6x + 7}{(x^2 + 2x - 3)^3} \neq 0,$$

то точек перегиба нет, а промежутками постоянного направления выпуклости будут интервалы $(-\infty, -3)$, (-3, 1), $(1, +\infty)$.

Составим таблицу знаков второй производной.

X	f''(x)	f(x)
$(-\infty, -3)$	+	выпукла вниз
-3	не существует	разрыв 2 рода
(-3,1)	_	выпукла вверх
1	не существует	разрыв 2 рода
(1,+∞)	+	выпукла вниз

6) Найдём асимптоты.

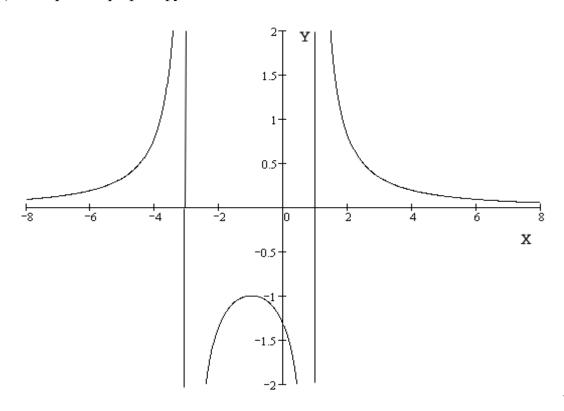
Вертикальные: x = -3, x = 1, так как в этих точках функция имеет разрыв 2 рода.

Найдём наклонную асимптоту. Угловой коэффициент прямой k и число b найдём, применяя формулы:

$$k = \lim_{x \to \infty} \frac{4}{(x^2 + 2x - 3)x} = 0; \ b = \lim_{x \to \infty} \frac{4}{x^2 + 2x - 3} = 0,$$

получаем горизонтальную асимптоту y = 0, наклонных асимптот нет.

7) Построим график функции.



6.4. Исследовать функцию и построить её график.

$$y = 2\ln\left(\frac{x}{x-4}\right) - 3$$

- 1) Область определения функции: $x \in (-\infty; 0) \cup (4; +\infty)$.
- 2) Функция общего вида (т.е. ни нечетная, ни четная, непериодическая), т.к. $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, $f(x) \neq f(x+T)$ при $T \neq 0$.
 - 3) Найдём точки пересечения графика функции с осями координат.

C осью
$$Ox: 2\ln\left(\frac{x}{x-4}\right) - 3 = 0 \Rightarrow x = \frac{4\exp(1.5)}{\exp(1.5) - 1} \approx 5.1.$$

С осью Оу: точек пересечения нет.

Функция
$$f(x) < 0$$
 при $x \in (-\infty,0) \cup \left(\frac{4\exp(1.5)}{\exp(1.5)-1}, +\infty\right)$ и $f(x) > 0$ при $x \in \left(4, \frac{4\exp(1.5)}{\exp(1.5)-1}\right)$.

4) Найдем стационарные и критические точки. Вычисляя первую производную

$$y' = \left(2\ln\left(\frac{x}{x-4}\right) - 3\right)' = -\frac{8}{x(x-4)},$$

находим критические точки x = 0 и x = 4, в которых производная не существует.

Составим таблицу знаков производной и поведения функции.

x	f'(x)	f(x)
$(-\infty,0)$	_	убывает
0	не существует	разрыв 2 рода
(0,4)	не определена	не определена
4	не существует	разрыв 2 рода
$(4,+\infty)$	_	убывает

5) Найдем возможные точки перегиба. Так как

$$y'' = \left(2\ln\left(\frac{x}{x-4}\right) - 3\right)'' = \left(\frac{-8}{x(x-4)}\right)' = \frac{8(2x-4)}{x^2(x-4)^2},$$

а точка x=2 не принадлежит области определения, то будем два интервала постоянной выпуклости - $(-\infty,0)$ и $(4,+\infty)$. При x<0 y''<0, поэтому функция выпукла вверх, x>4 y''>0, поэтому функция выпукла вниз.

6) Найдём асимптоты.

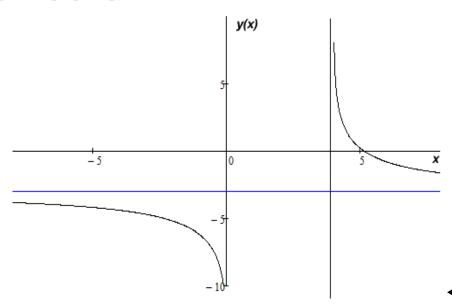
Вертикальные: x = 0, x = 4, так как функция терпит разрыв в этих точках. Найдём наклонную (горизонтальную) асимптоту. Угловой коэффициент прямой k и число b найдём, применяя формулы:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}; \quad b = \lim_{x \to \pm \infty} (f(x) - kx).$$

$$k = \lim_{x \to \infty} \left(\frac{2\ln\left(\frac{x}{x-4}\right) - 3}{x} \right) = 0 \qquad b = \lim_{x \to \infty} \left(2\ln\left(\frac{x}{x-4}\right) - 3\right) = -3$$

Таким образом, y = -3 - горизонтальная асимптота.

7) Построим график функции.



6.5. Исследовать функцию и построить её график.

$$y = \sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2}$$

- 1) Область определения функции: $x \in (-\infty; +\infty)$. Точек разрыва нет.
- 2) Функция общего вида (т.е. ни нечетная, ни четная, непериодическая), т.к. $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, $f(x) \neq f(x+T)$ при $T \neq 0$.
 - 3) Найдём точки пересечения графика функции с осями координат.

C осью
$$Ox: \sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2} = 0 \Rightarrow$$
 точка $M_1\left(\frac{5}{2},0\right)$.

C осью Oy: точка $M_2(0,\sqrt[3]{2}-\sqrt[3]{3})$.

Функция
$$f(x) < 0$$
 при $x \in \left(-\infty, \frac{5}{2}\right)$ и $f(x) > 0$ при $x \in \left(\frac{5}{2}, +\infty\right)$.

4) Найдём стационарные точки. Так как

$$y' = \left(\sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2}\right)' = \frac{2}{3\sqrt[3]{(x-2)(x-3)}},$$

то в точках x = 2 и x = 3, производная не существует.

Составим таблицу знаков производной и поведения функции.

X	f'(x)	f(x)
$(-\infty,2)$	_	убывает
2	0	точка минимума $f(x) = -1$
(2,3)	+	возрастает
3	0	точка максимума $f(x) = 1$
(3,+∞)	_	убывает

5) Найдем возможные точки перегиба. Так как

$$y'' = \frac{2}{9} \left(\frac{1}{[x-3]^{\frac{4}{3}}} - \frac{1}{[x-2]^{\frac{4}{3}}} \right),$$

то в точках x=2 и x=3, вторая производная y'' не существует, а в точке $x=\frac{5}{2}$ она равна нулю.

Составим таблицу знаков второй производной.

x	f''(x)	f(x)
$(-\infty,2)$	_	выпукла вверх
2	не существует	

$\left(2,\frac{5}{2}\right)$	+	выпукла вниз
$\frac{5}{2}$	0	
$\left(\frac{5}{2},3\right)$	_	выпукла вверх
3	не существует	
(3,+∞)	+	выпукла вниз

6) Найдём асимптоты.

Вертикальных асимптот нет, так как функция определена на всей числовой оси.

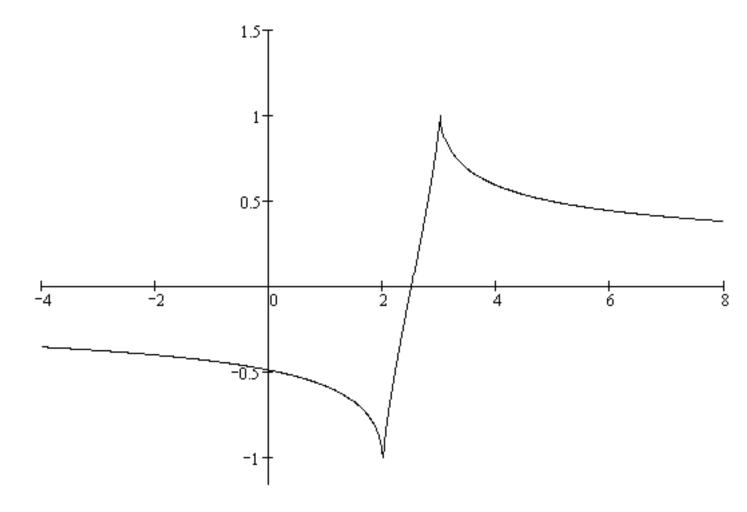
Найдём наклонную асимптоту.

Угловой коэффициент прямой k и число b найдём, применяя формулы:

$$k = \lim_{x \to \infty} \left(\frac{\sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2}}{x} \right) = 0, \ b = \lim_{x \to \infty} \left(\sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2} \right) = 0.$$

Таким образом, прямая y = 0 - горизонтальная асимптота.

7) Построим график функции.



6.6. Исследовать функцию и построить её график.

$$y = e^{-\sqrt{2}\sin x}$$

- 1) Область определения функции: $x \in (-\infty; +\infty)$. Точек разрыва нет.
 - 2) Функция не четная, не нечетная $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, периодическая период $T = 2\pi$.
 - 3) Найдём точки пересечения графика функции с осями координат.

С осью Ох точек пересечения нет.

C осью Oy: точка $M_2(0,1)$.

Функция f(x) > 0 при $x \in (-\infty, +\infty)$.

4) Найдём стационарные точки. Так как

$$y' = (e^{-\sqrt{2}\sin x})' = -\sqrt{2}e^{-\sqrt{2}\sin x}\cos x$$
,

то стационарными будут точки $x_k = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$

Составим таблицу знаков производной и поведения функции на интервале

$$\left(-\frac{\pi}{2},2\pi\right)$$
.

X	f'(x)	f(x)
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	_	убывает
$\frac{\pi}{2}$	0	точка минимума $f(x) = \exp(-\sqrt{2}) \approx 0,24$
$\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$	+	возрастает
$\frac{3\pi}{2}$	0	точка максимума $f(x) = \exp(\sqrt{2}) \approx 4,11$
$\left(\frac{3\pi}{2},2\pi\right)$	_	убывает

Таким образом, точки $x_k = \frac{\pi}{2} + 2\pi k$ - точки минимума, а $x_n = \frac{3\pi}{2} + 2\pi n$ - точки максимума. На интервалах $\left(-\frac{\pi}{2} + 2\pi k, \frac{\pi}{2} + 2\pi k\right)$ функция убывает, а на интервалах $\left(\frac{\pi}{2} + 2\pi n, \frac{3\pi}{2} + 2\pi n\right)$ функция убывает $(k, n \in \mathbf{Z})$.

5) Найдём возможные точки перегиба.

$$y'' = \left(e^{-\sqrt{2}\sin x}\right)'' = \sqrt{2}e^{-\sqrt{2}\sin x}\left(\sqrt{2}\cos^2 x + \sin x\right).$$

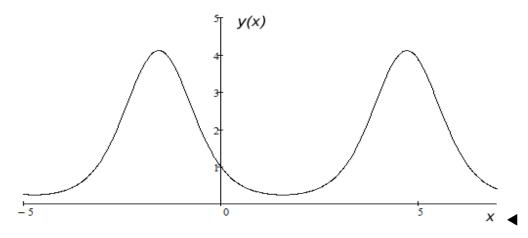
Тогда корнями уравнения y''=0 будут точки $x_k=-\frac{\pi}{4}+2\pi k$, $x_n=-\frac{\pi}{4}+2\pi n$, $k,n\in {\bf Z}$.

Составим таблицу знаков второй производной на интервале $\left(-\frac{3\pi}{4}, \frac{7\pi}{8}\right)$.

X	f''(x)	f(x)
$\left(-\frac{3\pi}{4}, -\frac{\pi}{4}\right)$	_	выпукла вверх
$-\frac{\pi}{2}$	0	точка перегиба
4		$f(x) = \exp(-\sqrt{2}) \approx 0.24$
$\left(\frac{\pi}{4}, \frac{7\pi}{8}\right)$	+	выпукла вниз

Таким образом, точки $x_k = -\frac{\pi}{4} + 2\pi k$, $x_n = -\frac{\pi}{4} + 2\pi n$ - точки перегиба,

- 6) Асимптоты отсутствуют.
- 7) Построим график функции



Литература

- 1. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 1977.
- 2. Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. М.: Высшая школа, 2000.
- 3. Зорич В.А. Математический анализ. М.: Наука, 1981.
- 4. Кудрявцев Л.Д. Курс математического анализа. М.: Высшая школа, 1981.
- 5. Тер-Крикоров А.М., Шабунин М.И. Курс математического анализа. М.: Наука, 1977.
- 6. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: ФИЗМАТЛИТ, 2002.