Т.А. Глебова, А.А. Шишков, В.И. Юркин МОНОТРОНЫ С НЕРАВНОМЕРНЫМ СВЧ ПОЛЕМ

Рассматриваются варианты монотрона с односторонним тороидальным и диафрагмированным резонаторами, отличающимися распределением электрического поля СВЧ в пространстве взаимодействия. Обсуждаются условия обеспечения эффективного режима работы. Проведены численные расчёты и анализ электронных процессов, показавшие возможность получения КПД по мощности в нагрузку около 40 % в монотроне с диафрагмированным резонатором.

Ключевые слова: монотрон, резонаторы, пространство взаимодействия, неоднородное поле, КПД.

Введение. Монотрон – простейший по конструкции электронный прибор СВЧ [1]. Он имеет один резонатор с единственным протяженным пространством взаимодействия (ПВ) с однократным пролётом электронов через это пространство. Основное отличие монотрона от клистрона заключается в том, что все электронные СВЧ процессы – модуляция электронного потока по скорости, группирование электронов и отбор их энергии СВЧ полем – совмещены в одном пространстве.

Подробный анализ литературы [1-6] и других источников, посвящённых теории монотрона и истории его создания, приводится в [7]. В частности, рассматриваются возможные пути увеличения КПД этого генератора за счёт больших амплитуд СВЧ напряжения в резонаторе, превышающих ускоряющее напряжение в несколько раз, а также использования резонаторов с неравномерным распределением электрического поля в пространстве взаимодействия. Однако следует отметить, что во всех этих работах отсутствует анализ практической реализации описанных режимов работы (рабочий ток, эквивалентное сопротивление резонатора) и не даётся оценка полного (с учётом контурного) КПД, который может быть существенно меньше электронного из-за необходимости получения больших амплитуд СВЧ напряжения за счёт увеличения эквивалентного сопротивления и добротности нагруженного резонатора, что приводит к уменьшению контурного и полного КПД.

В данной статье рассматриваются возможности увеличения не только электронного, но и полного КПД монотрона за счёт использования оригинальных резонаторов [8] с неравномерным распределением электрического поля в пространстве взаимодействия при больших амплитудах СВЧ напряжения, а также обсуждаются условия, обеспечивающие эффективный режим его работы.

Определение условий, обеспечивающих эффективную работу монотрона. Самовозбуждение монотрона обусловлено возникновением отрицательной электронной проводимости G_e при прохождении тока через ПВ

 $\frac{G_e}{G_0} = \varphi_a(\theta)$, где $\theta = \gamma d$, d – длина пространства взаимодействия $\gamma = \frac{\omega}{\upsilon_0} = \frac{3170}{\lambda\sqrt{U_0}}$, ω – круговая частота, $\upsilon_0 = 5.95 \cdot 10^7 \sqrt{U_0}$ – скорость электронов на входе в пространство взаимодействия, см/с, U_0 – ускоряющее напряжение, В, λ – рабочая длина волны, см, $\varphi_a(\theta)$ – известная функция [9] угла пролёта в пространстве взаимодействия, имеющая в приближении малых амплитуд отрицательные значения при $\theta = (2 \div 2.8)\pi$; $G_0 = \frac{I_0}{U_0}$, I_0 –

постоянный ток.

Заметим, что величину уд правильнее называть приведённой длиной пространства взаимодействия, так как она не совпадает с реальным углом пролёта, который зависит от амплитуды СВЧ напряжения и провисания потенциала в ПВ из-за влияния пространственного заряда.

Электронный КПД монотрона при малых амплитудах напряжения $\xi = \frac{U_m}{U_0} < 1$ определяется

выражением $\eta_e = \frac{1}{2} \xi^2 Ge / Go$ или

$$\eta_e = \frac{1}{2} \varphi_a(\theta) \xi^2 \,. \tag{1}$$

При стационарных колебаниях $|G_e| = l/R_{_{3H}}$ где $R_{_{3H}} = \rho Q_{_{\rm H}}$ – эквивалентное сопротивление нагруженного резонатора, ρ , $Q_{_{H}}$ – характеристическое сопротивление и нагруженная добротность резонатора.

Из (1) следует

$$\frac{R_{_{\mathcal{H}}}}{U_0/I_0} = \frac{\xi^2}{2\eta_e}.$$
 (2)

Это равенство, справедливое и для клистрона, позволяет определить ток, необходимый для получения стационарных колебаний монотрона. Введём обозначение

$$K = \frac{\xi^2}{2\eta_e} \tag{3}$$

и из (2) получим

$$I_0 = K \frac{U_0}{R_{_{\mathcal{H}}}} \quad . \tag{4}$$

В режиме малых амплитуд ($\xi = \frac{U_m}{U_0} < 1$) ве-

личину *К* можно получить из (1) по известной зависимости электронной проводимости монотрона G_e от угла пролета θ . При $\theta = 2,4\pi$ (середина области, в которой $G_e < 0$) $|\varphi_a(\theta)| = 0,05$, а K = 20. Следовательно, $I_0 \approx 40 \frac{U_0}{R_{_{3H}}}$. Это пуско-

вой ток монотрона. В случае больших амплитуд аналитические расчёты [3], а также численное моделирование показывают, что при равномерном распределении электрического поля в пространстве взаимодействия оптимальная относительная амплитуда

$$\xi = \frac{U_m}{U_0} \approx 4; \quad \eta_e \approx 20\%; \quad \frac{\xi^2}{2\eta_e} = 40,$$

следовательно, $I_0 \approx 40 \frac{U_0}{R_{_{2H}}}$.

В клистронах максимальное значение ξ не превышает 1,25, а величина K < 2.

Из сказанного следует, что для возбуждения и обеспечения эффективного режима работы монотрона при больших амплитудах СВЧ напряжения, в несколько раз превышающих ускоряющее, требуется большой ток, который, на первый взгляд, трудно реализовать даже в многолучевой электронно-оптической системе (ЭОС). Однако следует иметь в виду, что длина пространства взаимодействия резонатора монотрона примерно в 6 раз больше, чем длина зазора в клистроне. Соответственно характеристическое сопротивление резонатора монотрона р пропорционально больше, чем в клистроне. Это наглядно видно на примере монотрона с цилиндрическим резонатором на виде колебаний Е010.

На оси резонатора $\rho_0 = 185, 2d/R$, Ом (*d*, *R* – длина и радиус резонатора). При использовании многолучевой ЭОС и тороидального резонатора с большим относительным диаметром пролётной трубы (до 0,5 рабочей длины волны) для получения большего тока характеристическое сопротивление также увеличивается пропорционально длине ПВ. На расстоянии r от оси пролётной трубы, где располагаются лучи многолучевой ЭОС, $\rho = \rho_0 J_0^2 (kr)$, где $k = 2\pi/\lambda$, $J_0 - ф$ ункция Бесселя первого рода нулевого порядка. Собственная добротность резонатора монотрона также больше, чем в клистроне, так как увеличивается объём индуктивной части тороидального резонатора. В результате эквивалентные сопротивления как ненагруженного R_{2} , так и нагруженного $R_{\mathcal{H}}$ резонатора монотрона могут быть значительно больше, чем в клистроне, что позволяет снизить требования к ЭОС по току и первеансу,

Если использовать в монотроне резонаторы с неравномерным распределением электрического СВЧ поля в пространстве взаимодействия, то КПД увеличится, а ток I_0 уменьшится.

Получим формулу для полного КПД монотрона η с учётом контурного КПД η_{κ} $\eta = \eta_{e}\eta_{\kappa}$, где $\eta_{K} = l - Q_{\mu}/Q_{0} = l - R_{\mu}/R_{\mu}$. Используя (2), можно получить

$$\eta = \eta_e - \frac{\xi^2}{2p\sqrt{U_0}\rho Q_0},\tag{5}$$

где *p* – первеанс ЭОС.

Из формулы (5) видно, что для увеличения полного КПД необходимо увеличивать первеанс и ускоряющее напряжение. При этом увеличивается и характеристическое сопротивление резонатора пропорционально $\sqrt{U_0}$ вследствие увеличения длины ПВ, что также увеличивает КПД. Во всех приведённых выше соотношениях при больших амплитудах СВЧ напряжения величины ξ и η_e определяются в результате численных расчётов.

Монотроны с неравномерным распределением электрического поля СВЧ в пространстве взаимодействия резонаторов. Bo входной части прстранства взаимодействия монотрона происходят модуляция и группирование электронов, а отбор их энергии - в выходной части. Из физических соображений следует, что выходной участок должен быть с большей напряжённостью электрического поля по сравнению с входным. Простейшей конструкцией, в которой можно получить такое поле с нарастающей напряжённостью в направлении движения электронов, является тороидальный резонатор, имеющий только в выходной части пространства взаимодействия выступ пролётной

трубы, около которого образуется сильное электрическое поле. На рисунке 1 схематически показан такой резонатор и распределение напряжённости электрического поля вдоль пространства взаимодействия в месте прохождения электронных лучей. Степень неоднородности поля можно характеризовать отношением напряжённостей поля в конце и в начале ПВ E_2/E_1 , которое зависит от относительных длины выступа h/λ и диаметра пролётной трубы D/λ .

Рисунок 1 – Односторонний тороидальный резонатор: а – эскиз резонатора, б – структура электрического поля

Для размещения необходимого количества каналов с электронными лучами в пролётной трубе её диаметр D выбирается в пределах $D = (0,2 \div 0,5)\lambda$, причём большие значения коэффициентов соответствуют меньшим длинам волн. На рисунке 2 приведены зависимости отношения E_2/E_1 от относительной длины выступа h/λ для двух резонаторов, отличающихся относительным диаметром пролётной трубы D/λ .

моделирование электронных Численное процессов проводилось по программе, основанной на двумерной модели электронного потока из деформируемых частиц [10] и метода конечных разностей для расчёта внешних электрических полей и поля пространственного заряда. В программе определяются токопрохождение электронов в канале, нормированные кинетическая энергия электронов одного периода, амплитуды первых трёх гармоник конвекционного тока в заданных плоскостях, амплитуда гармоники наведённого тока I_{μ} , на которую настроен резонатор, фазовый сдвиг между СВЧ напряжением и наведённым током в резонаторе φ . Для удобства анализа определяется также сдвиг фазы между СВЧ напряжением и наведённым током относительно максимума тормозящего поля $\varphi_{\mu} = \varphi - \pi$. Программа позволяет оптимизировать по максимуму КПД значения амплитуды напряжения и приведённой длины ПВ монотрона. Для учёта структуры неоднородного высокочастотного поля в исходных данных задаётся нормированное распределение СВЧ потенциала при заданном радиусе, полученное по программе расчёта поля и параметров резонаторов [11], которое используется в качестве граничного условия при расчёте СВЧ поля в ПВ монотрона. Электронный КПД определялся как по амплитуде первой гармоники наведённого тока, так и по изменению кинетической энергии электронов. Выполнены расчёты электронного КПД вариантов монотрона, отличающихся длиной выступа h пролётной трубы в резонаторе и соответственно степенью неоднородности электрического поля в пространстве взаимодействия. Расчеты проводились при разных значениях γd , а диаметр пролётной трубы D=25мм ($D/\lambda=0.208$) оставался неизменным. При однорядном расположении лучей в пролётной трубе размещается 15 каналов многолучевой ЭОС из 15 лучей с первеансом *p*₁=0,35 мкА/ В^{3/2} каждый. Возможно и двухрядное расположение 24-х лучей в такой пролётной трубе при использовании соответствующей ЭОС. Для определения оптимального режима работы монотрона для каждого варианта распределения электрического поля в ПВ изменялись относительные амплитуда ξ и длина γd . Наибольший электронный КПД, равный 32 %, получен для резонатора с длиной выступа $h/\lambda = 0,1$ и отношением $E_2 / E_1 = 2,6$ при $\xi = 4,2$. Соответствующее этому варианту распределение электрического поля приведено на рисунке 3, кривая 1.

Рисунок 2 – Зависимость перепада напряженности СВЧ поля от относительной длины выступа пролетной трубы (1 - D/λ=0,208, 2 - D/λ=0,460)

На рисунке 4 (кривая 2) показана зависимость электронного КПД от приведённой длины $\gamma d /\pi$ при оптимальной величине ξ . Для сравнения на этом рисунке приведены результаты расчёта КПД монотрона с цилиндрическим резонатором (кривая 1), то есть с равномерным распределением электрического поля. Видно, что КПД монотрона с односторонним тороидальным резонатором увеличился на 14 %, а область генерации сместилась в сторону меньших углов пролёта ($\gamma d = 1,76 - 2,46\pi$).

Рисунок 3 – Распределение напряженности электрического СВЧ поля вдоль ПВ на расстоянии r от оси (1 – тороидальный резонатор, 2 – резонатор с диафрагмой)

Рисунок 4 – Зависимость электронного КПД от приведенной длины ПВ (1 – цилиндрический резонатор, 2 – тороидальный резонатор, 3 –резонатор с диафрагмой)

Анализ результатов расчёта позволил выявить основные причины ограничения КПД монотрона – малый наведённый ток I_{μ} , большой сдвиг по фазе φ_{μ} между наведённым током и напряжением, потери энергии поля при прохождении электронами средней части пространства взаимодействия. В монотроне с цилиндрическим резонатором (равномерное поле) $I_{\mu}/I_0=0,3, \varphi_{\mu}=-$ 1,22 рад. В монотроне с тороидальным резонатором (неравномерное поле) $I_{\mu}/I_0=0,37, \varphi_{\mu}=-1.15$ рад.

На рисунке 5 (кривая 1) показана динамика изменения средней энергии электронов *W* по

длине ПВ в монотроне с тороидальным резонатором по отношению к их энергии на входе W_0 . Из рисунка видно, что в предвыходной части ПВ энергия электронов возросла, так как сгустки электронов попали в ускоряющую фазу поля и отобрали у него часть энергии.

Из анализа полученных результатов следует, что в распределении поля важен не только перепад напряжённости, но и характер её распределения на предвыходном участке. Выходной участок ПВ, где электроны отдают энергию, должен быть не только с большой напряжённостью электрического поля, но и довольно коротким, а в остальной части ПВ напряжённость поля должна быть гораздо меньше, чтобы снизить потери энергии электронов. В результате моделирования получена геометрия резонатора (рисунок 6), в котором распределение поля удовлетворяет этим требованиям. В этом резонаторе вблизи выступа выходной пролётной трубы размещается диафрагма с внутренним отверстием, диаметр которого немного превышает диаметр пролётных труб. Диафрагма делит пространство взаимодействия на части по длине в отношении $l_1/l_2 = 5:1$. Диаметр индуктивной части и небольшой (h₁/λ=0,015) выступ пролётной трубы во входной части резонатора подбираются для выравнивания распределения поля вдоль входного участка ПВ. В пролётной трубе у выходного конца резонатора имеется выемка, которая способствует большей концентрации электрического поля СВЧ в области прохождения электронных лучей около торца этой трубы

На рисунке 3 (кривая 2) приведено распределение напряжённости электрического поля в ПВ резонатора с перепадом напряжённости в конце и начале ПВ $E_2/E_1=4$, при котором в монотроне с однорядным расположением лучей получен электронный КПД, равный 42 % при ξ =3,2. Коэффициент *К* в формуле (4) при этом уменьшается до величины *К*=12,2. Зависимость электронного КПД от приведённой длины ПВ показана на рисунке 4 (кривая 3). По сравнению с предыдущими вариантами область генерации в ещё большей степени сместилась в сторону меньших углов пролёта (γd =1,61 π - 2,34 π). Фазовый сдвиг между переменными наведённым током и напряжением уменьшился до $\phi_{\rm H}$ =-0,56 рад, а амплитуда наведённого тока увеличилась до $I_{\rm H}$ / I_0 =0,66.

Рисунок 6 – Резонатор с диафрагмой (а – эскиз резонатора, б – структура электрического поля)

Как следует из рисунка 5 (кривая 2), отбор энергии электронов у поля в предвыходной части ПВ заметно уменьшился по сравнению с монотроном на основе тороидального резонатора.

При использовании ЭОС с многорядным расположением лучей в данной конструкции монотрона снижается электронный КПД для внутренних лучей. Объясняется это тем, что напряжённость электрического СВЧ поля в ПВ сильно зависит от радиальной координаты. В результате распределение электрического поля по длине ПВ для внутренних лучей изменяется и становится неоптимальным.

Оценим величину полного КПД монотрона с учётом контурного КПД, используя формулу (5). В оптимальном режиме работы постоянная $\gamma = 1,74$ рад/см, что соответствует $U_0 = 22$ кВ. Длина волны $\lambda = 12$ см. Первеанс при однорядном расположении 18 лучей p = 6,3 10⁻⁶ A/B^{3/2}, ток $I_0 = 20,6$ А. Собственная добротность резонатора принята равной Q₀ = 2000, расчётное значение характеристического сопротивления $\rho = 80$ Ом. В результате получен полный КПД, равный 38,6 %, что превышает КПД известных двухзазорных клистронных генераторов.

Заключение. На основе численного моделирования исследованы варианты монотрона с резонаторами, имеющими неравномерное распределение напряжённости электрического поля СВЧ в ПВ. Показано, что приведённая длина ПВ уменьшается с увеличением неоднородности поля. Имеется оптимальное по КПД соотношение напряжённостей поля СВЧ в конце и начале ПВ. В монотроне с односторонним тороидальным резонатором возможно получение электронного КПД до 32 %. В монотроне с резонатором, имеющим сильно неоднородное поле у выходного конца ПВ за счёт использования диафрагмы с внутренним отверстием, возможно получение электронного КПД, равного 42 %, и КПД по мощности в нагрузку 38,6 %. Сравнительно небольшая для монотрона амплитуда СВЧ напряжения, равная 3,2U₀ в этом варианте, позволяет снизить требования к ЭОС по току и первеансу. Монотронный генератор может быть использован как простой по конструкции эффективный источник мощности СВЧ.

Библиографический список

1. *W.W. Hansen, R.H. Varian.* "Electron beam oscillator", patent of USA №2,269,456 13.01.1942, application 22.01.1938.

2. Хольман Х., Тома А. Динамика управляемого пучка //Zeitschrift fur Hochfrequenztecrmik, 49.– 1937. – С.109, 145, 204.

3. *Мюллер, Ростас.* Генератор с временем пролета и объемным резонатором *Helvetica Physice Acta*, 1940. С. 435.

4. *Хольман Х.* Генерирование и усиление дециметровых и сантиметровых волн. М.: Советское радио, 1948. 130 с.

5. Barroso J., Castro P., Rossi Y., Gonsales J. Research and Development in High-Power 6, 7 GHZ Monotron// IEEE 2009. P. 431, 432.

6. Barroso J. Stepped Electric-Field Profiles in Transit-time Tubes // IEEE Trans. Electron devise. Vol 52. № 5. May 2005.

7. Панов В.П., Шишков А.А., Юркин В.И., Рыбачек В.П., Мелешкевич П.М., Пугнин В.И., Стройков Е.А., Юнаков А.Н. О создании приборов с большими углами пролета электронов // Вестник Рязанского государственного радиотехнического университета. 2010. № 32. С.110 – 113.

8. Панов В.П., Шишков А.А., Юркин В.И., Рыбачек В.П., Мелешкевич П.М., Пугнин В.И., Стройков Е.А., Юнаков А.Н. Способ генерации СВЧ колебаний и устройства для его осуществления (варианты)// Патент заявлен 22.12.2008 г. Патент РФ №2391739. Опубликован 10.06.2010 г. Бюллетень № 16.

9. Лебедев И.В. Техника и приборы СВЧ. Т. 2. М.: Высшая школа, 1972. 375 с.

10. Панов В.П., Федяев В.К., Юркин В.И. Исследование моделей электронного потока для расчёта группирования // Электр. техн. Сер. 1. Электроника СВЧ. 1975. Вып. 9. С. 30 – 39.

11. Шишков А.А., Васин Н.Н., Сычев В.Б. Расчет азимутально-симметричных видов колебаний в резонаторах, частично заполненных диэлектриком // Электронная техн. Сер.1. Электроника СВЧ. 1985. Вып.5. С. 59 – 62.