Квазипорядковая размерность

Подготовила: Русакова Е.А., гр.342.

Руководитель: Шматков В.Д.

Квазипорядком называют отношение, удовлетворяющее следующим условиям:

1)
$$i \le i$$
;
2) $i \le k$, $k \le i \rightarrow i \le j$.

Известен факт, что любой квазипорядок *R* можно представить как пересечение «гантелек»:

$$\Gamma_1 \cap \Gamma_2 \cap \cdots \cap \Gamma_k = R$$

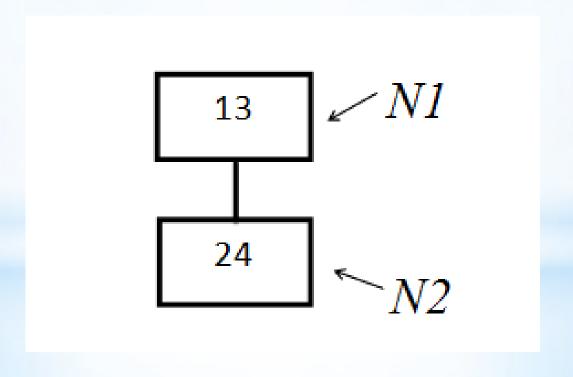
Дано множество $N \equiv \{1, 2, ..., n\}$.

Рассматривается разбиение множества N, где $N \equiv N_1 \cup N_2$, $N_1 \cap N_2 \equiv \emptyset$, такое что:

- *Если $i, j \in N_1$, то $(i, j) \in \Gamma$, $(j, i) \in \Gamma$;
- *Если $i, j \in N_2$, то $(i, j) \in \Gamma$, $(j, i) \in \Gamma$;
- *Если $i \in N_1, j \in N_2$, то $(i,j) \in \Gamma$;
- *В остальных случаях (i,j) не принадлежит отношению Γ .

Отношение Г можно представить в виде гантелек:

$$N = \{1, 2, 3, 4\}$$



Решим следующую задачу:

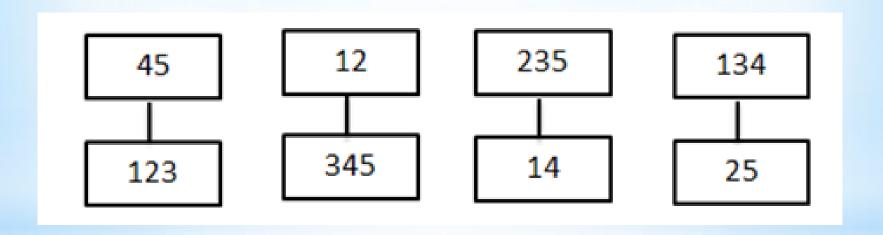
Найти минимальное число k, такое что для каких-то гантелек пересечение этих k гантелек было равно пустому множеству.

$$\Gamma_1 \cap \Gamma_2 \cap \cdots \cap \Gamma_k = \emptyset$$

Решим данную задачу для числа элементов множества N равным n=4.

1-2	2-1	3-1	4-1	5-1
1-3	2-3	3-2	4-2	5-2
1-4	2-4	3-4	4-4	5-3
1-5	2-5	3-5	4-5	5-4

Гантельки можно построить следующим образом:



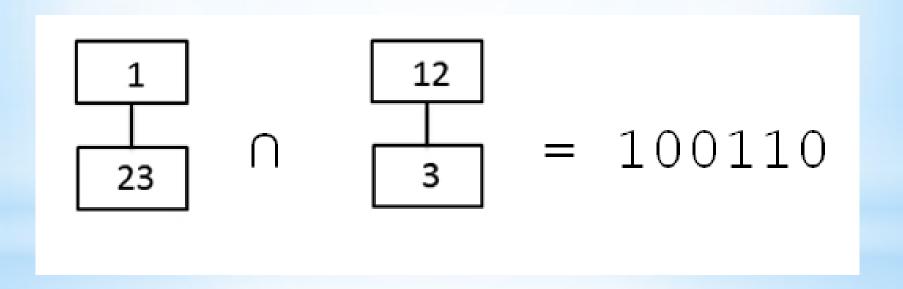
*На первом шаге мы удалим пары 1-4, 1-5, 2-4, 2-5, 3-4, 3-5:

*На втором шаге пары 3-1, 3-2, 4-1, 4-2, 5-1, 5-2:

k
4
4
5
5
6
6
7
7
8
8

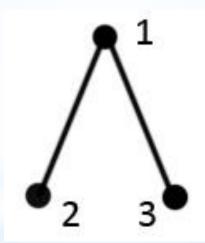
Но для значений n>13 метод не является наиболее оптимальным. При повторных вычислениях была выдвинута гипотеза, что оценка $k=2\times[\log_2 n+1]$ или метод «половинного деления» является оптимальным для значений n>13.

Любой квазипорядок можно закодировать числом. Например:



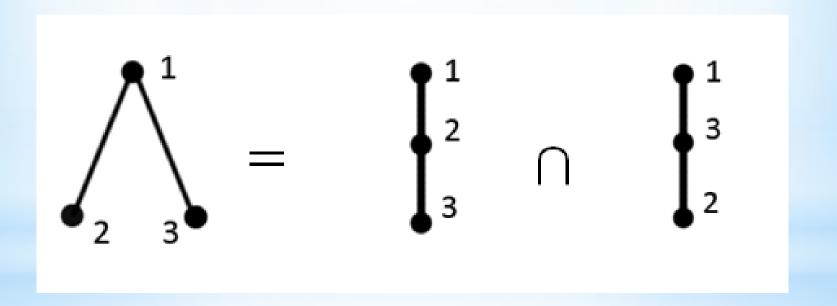
Каждая цепь из n элементов является пересечением n-1 гантельки, поэтому получаем оценку, что каждое направленное дерево является пересечением $2 \times (n-1)$ гантельки.

Дано дерево:

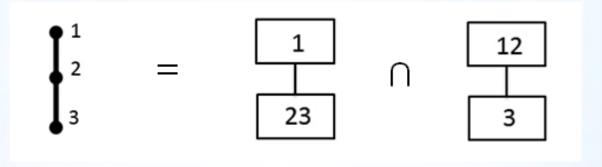


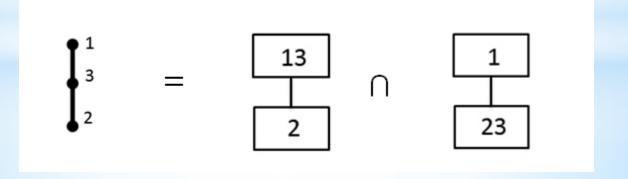
Представить данное дерево сначала в виде цепей, затем в виде гантелек.

*1 шаг. Представим дерево в виде пересечения цепей.

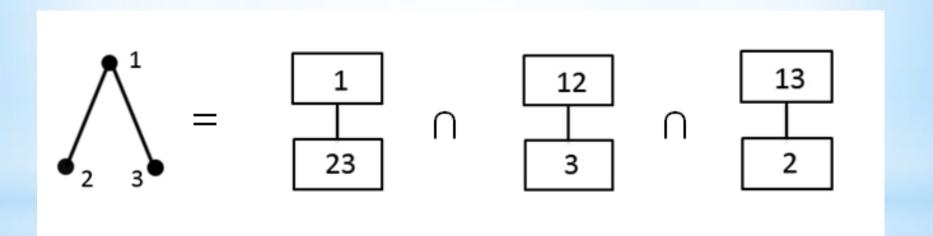


*2 шаг. Представим каждую цепь в виде пересечения гантелек.

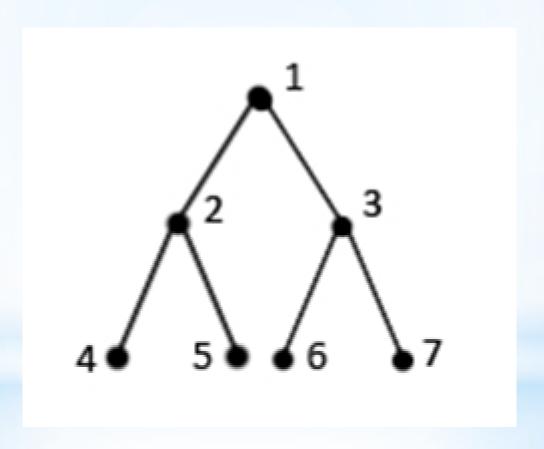


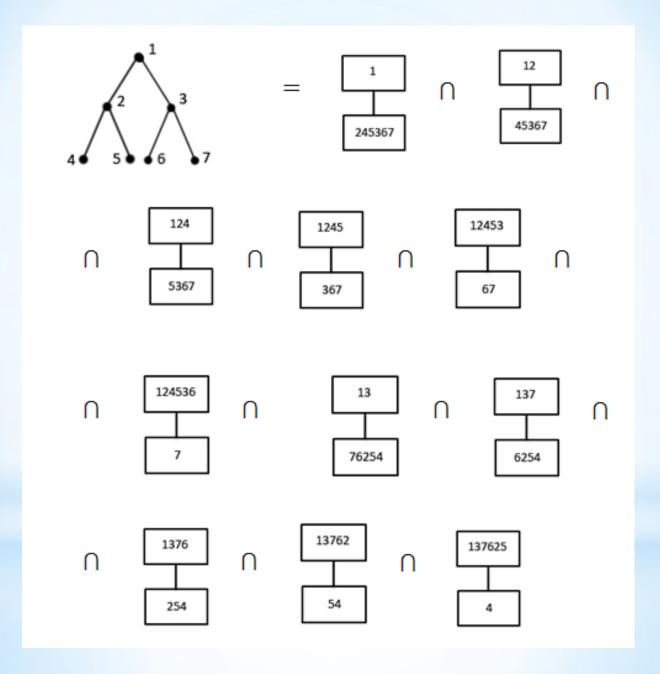


*3 шаг. Представим дерево в виде пересечения гантелек.



*Дано дерево:





*Каждый частичный порядок можно представить в виде пересечения цепей. Минимальное число таких цепей назовем порядковой размерностью.

*Мы введем аналогичное понятие - квазипорядковая размерность.

*Спасибо за внимание!