УДК 621.396

А.А. Илюхин

СПОСОБ ЭФФЕКТИВНОГО РАСПРЕДЕЛЕНИЯ РЕСУРСА ПРОПУСКНОЙ СПОСОБНОСТИ СПУТНИКОВЫХ СЕТЕЙ ИНТЕРАКТИВНОГО ДОСТУПА

Рассмотрены механизмы статистического резервирования ресурса обратных каналов спутниковыми терминалами в сетях интерактивного доступа. Усовершенствован способ распределения доступной пропускной способности в виде постановки и решения задачи стохастического нелинейного целочисленного программирования. Предложены непараметрические и эвристические процедуры, позволяющие повысить вычислительную эффективность и качество решения оптимизационной задачи.

Ключевые слова: спутниковая сеть, интерактивный доступ, пропускная способность, динамическое резервирование, стохастическое программирование.

Введение. Интерактивные мультимедийные спутниковые сети, соответствующие спецификации стандартов DVB-RCS (ETSI EN 301 790 v1.3.1, 2003 г.), IPoS (TIA-1008, 2003 г.), становятся весьма привлекательным и высокоэффективным решением для ведомств, крупных предприятий и компаний с территориально-распределенной инфраструктурой, крайне заинтересованных в снижении затрат на оплату услуг связи и предпочитающих создавать собственные более экономичные технологические сети связи.

Реализованные в таких сетях механизмы интерактивного доступа (рисунок 1) основаны на периодической передаче спутниковыми терминалами (СТ) в моменты времени $t_1, t_5,...$ запросов на резервирование пропускной способности обратных (CT HUB) каналов, учитывающих текущее состояние очередей буферов различных классов сервиса (голосовые приложения, передача данных, видеоконференцсвязь и т. д.). НUB-станция, анализируя доступный ресурс пропускной способности, формирует частотно-временной план (ЧВП), регламентирующий объем и порядок передачи терминалами пачек пакетных данных на длительности очередного фрейма. Спустя некоторое время планирования, ЧВП циркулярно рассылается получившим регистрацию активным спутниковым терминалам. Длительность процедуры распределения (планирования) ресурсов [t₂,t₃] в реализованных современных VSAT-технологиях достигает 100...200 мс и с учетом времени

распространения сигнала 500 мс существенно увеличивает реакцию сети на обработку запросов динамического резервирования.

Большинство предлагаемых способов планирования заключается в нахождении вида интегральной функции качества сетевого обслуживания по всем классам сервиса от распределяемых ресурсов и непосредственном решении известными методами задачи нелинейного целочисленного программирования [1-4]. Ряд работ [5, 6] предполагает включение в интегральную функцию качества прогнозных оценок состояния очередей либо оцениваемых параметров известных статистических моделей потоков. Уровень вычислительной сложности

предлагаемых алгоритмов, особенно при решении задач большой размерности, не соответствует условиям реализации в реальном времени, что не позволило довести их до практического применения в современных VSAT-технологиях.

Отсутствие математически строгого решения подобных задач, обладающего приемлемой для реализации в реальном времени вычислительной сложностью, исключающего использование известных статистических моделей потоков данных и допускающего применение механизмов обеспечения дифференцированных требований к качеству сервиса QoS (Quality of Service) для различных приложений, обусловливает необходимость совершенствования методов их решения.

Постановка задачи. Общедоступный частотно-временной ресурс обратных каналов согласно спецификации стандарта DVB-RCS разделяется на фреймы (рисунок 2), каждый фрейм, в свою очередь, – на частотно-временные слоты.

Передача пакетного трафика спутниковыми терминалами осуществляется по одному или последовательно по нескольким частотным каналам на временных позициях трафиковых тайм-слотов. Последовательность тайм-слотов в пределах фрейма на каждой несущей имеет следующий порядок: тайм-слот CSC общеканальной сигнализации, тайм-слот ACQ частотной коррекции, тайм-слот SYNC синхронизации и n_{trf} трафиковых тайм-слотов для передачи пользовательских данных.

Рисунок 2 – Частотно-временная структура фрейма

Распределение доступных трафиковых таймслотов в очередном *k*-ом фрейме

$$M(k) = \Delta f_{fr} / \Delta f_s \cdot n_{trf} - a(k),$$

где $\Delta f_{fr} / \Delta f_s$ – количество частотных несущих на фрейм; a(k) – число слотов, резервированных запросами предыдущих фреймов, осуществляется с учетом известного либо прогнозируемого статистического распределения количества протокольных блоков данных (PDU – Protocols Data Unit) в очередях буферов MACуровня активных спутниковых терминалов $f_s^I : Z^+ \cup \{0\}$. В общем случае $f_s^I(y) > 0$, $\forall y \in [0, \overline{y}_s]$, $s = \overline{1,S}$, где \overline{y}_s – максимально возможное число PDU соответствующего класса сервиса.

Вектор переменных решения $\vec{x} = (x_1, ..., x_S)^T$, заданных на множестве допустимых целочисленных значений $X^I = \{x_s \mid x_s \ge 0\}, \quad \forall s = \overline{1,S},$ определяет количество обслуживаемых PDU по всем очередям классов сервиса. Для обслуживания одного PDU соответствующего класса сервиса HUB-станцией выделяется необходимый объем трафиковых тайм-слотов $\vec{d} = (d_1, ..., d_S)^T$.

Уровень требований к обеспечению дифференцированного качества QoS (Quality of Service) по классам сервиса устанавливается вектором удельных весовых коэффициентов (штрафов) $\vec{\varpi} = (\varpi_1, ..., \varpi_S)^T$ за отказ в обслуживании одного PDU соответствующего класса сервиса *s*.

Формирование частотно-временной структуры фрейма с резервированными слотами и ее циркулярная рассылка в виде сервисных таблиц состава фрейма (FCT) и структуры слотов (TCT) осуществляются HUB-станцией сети для всех активных спутниковых терминалов.

Решение оптимизационной задачи заключается в достижении наиболее высокого уровня обеспеченности обслуживанием потоков данных активных спутниковых терминалов с учетом дифференцированных требований к качеству их сервиса путем минимизации интегральной штрафной функцией $Q(\vec{x})$.

Например, для класса сервиса *s* при наличии в буфере *y* PDU и выделении тайм-слотов под обслуживание всего лишь *x_s* PDU весовая функция штрафа выражается как

$$q_s(y, x_s) = \varpi_s \max\{0, y - x_s\}.$$
 (1)

Тогда ожидаемый штраф для класса сервиса s в случае известной дискретной (гистограммной) плотности распределения f_s^I , когда обеспечены тайм-слотами x_s PDU, выражается функцией

$$Q_{s}^{I}(x_{s}) = \sum_{y=x_{s}}^{\infty} q_{s}(y, x_{s}) f_{s}^{I}(y) = \varpi_{s} \sum_{y=x_{s}}^{\infty} (y - x_{s}) f_{s}^{I}(y) ,$$
(2)

а общий ожидаемый штраф $Q(\vec{x}) = \sum_{s} Q_{s}(x_{s})$.

Общее количество назначаемых трафиковых тайм-слотов всем классам сервиса должно быть не более числа доступных тайм-слотов во фрейм

$$H(\vec{x}) \le 0 \,, \tag{3}$$

где $H(\vec{x}) = \vec{x}^T \vec{d} - \dot{l}$.

С учетом ограничения (3) задача распределения тайм-слотов между потоками всех классов сервиса активных спутниковых терминалов математически формализуется в следующем виде:

$$minQ(\vec{x}, f_s^I(y), s), H(\vec{x}) \le 0, \vec{x} = (x_1, ..., x_s), \vec{x} \in \mathbf{X}^I.$$
 (4)

Задача относится к классу задач стохастического нелинейного целочисленного программирования. Известные методы, применяемые к задачам такого класса, не позволяют достичь приемлемой для решения в реальном времени вычислительной сложности и приводят к длительным процедурам поиска оптимальных решений [7]. Для упрощения решения предлагается привести задачу целочисленного программирования к задаче нелинейной безусловной оптимизации с ослаблением ограничения целочисленности переменных до непрерывных значений и заключительного этапа поиска близких к оптимальным целочисленных решений на основе эвристических процедур.

Однако ввиду недифференцируемости функции $f_s^I(y)$ целочисленных переменных для применения градиентных процедур методов нелинейной оптимизации проведем ее замену некоторой аппроксимирующей функцией $f_s: R^+ \cup \{0\}$ плотности вероятности числа PDU, допускающей условие двойной дифференцируемости $f_s(y)$ в интервале $(0,\infty)$.

В условиях непараметрической априорной неопределенности относительно вида распределения количества PDU на основе наблюдаемой в дискретные моменты времени однородной выборки $Y_s = \{y(t_1), ..., y(t_N)\}$ по каждому классу сервиса $\forall s = \overline{1, S}$ могут быть сформированы регрессионные оценки плотности вероятности [8]

$$\hat{f}_{s}(y) = \frac{\sum_{n=1}^{N} K\left(\frac{y - y(t_{n})}{\alpha}\right)}{N\alpha}, \quad (5)$$

где $K(\alpha)$ – ядро, удовлетворяющее ряду известных свойств [8]; α – параметр сглаживания, значение которого может быть определено из условия максимизации функции правдоподобия, определяемой по методу перекрестной проверки

$$\Lambda(\alpha) = \prod_{n=1}^{N} \hat{f}(y(t_n)), \qquad (6)$$

где $\hat{f}(y(t_n)) = \frac{\sum_{i=1}^{N} K\left(\frac{y-y(t_i)}{\alpha}\right)}{(N-1)\alpha}$.

Значения элементов выборки $Y_s = \{y(t_1), ..., y(t_N)\}, \forall s = \overline{1, S}$ обновляются в ходе реализации процедуры скользящего окна.

Представим составляющие (2) исходной целевой функции с целочисленными переменными в форме записи с действительными переменными

$$Q_s(x_s) = \varpi_s \int_{x_s}^{\infty} (y - x_s) \hat{f}_s(y) dy \qquad (7)$$

и проведем анализ свойств задачи нелинейной оптимизации, использующей непараметрические регрессионные оценки плотности.

Анализ свойств задачи нелинейной оптимизации

Утверждение 1. Пусть на выпуклом множестве $\mathbf{X} \subset \mathbb{R}^n$ существует некоторая функция $f : \mathbf{X} \mapsto \mathbb{R}$, дважды непрерывно дифференцируемая по **X**. Если матрица Гессе $\nabla^2 f(\mathbf{x})$ является положительно полуопределенной, то $f(\mathbf{x})$ выпукла.

Утверждение 2. Интегральная функция $Q(\mathbf{x})$ *s* переменных с непараметрической регрессионной оценкой плотности распределения вероятности $\hat{f}_s(y)$, $s = \overline{1,S}$ является выпуклой по множеству X.

Доказательство. Определим первые и вторые производные функции $Q_s(x_s)$ по x_s в интервале $(0,\infty)$ для всех классов сервиса $s = \overline{1,S}$

$$\frac{dQ_s(x_s)}{dx_s} = \varpi_s \left(\int_0^{x_s} \hat{f}_s(y) dy - 1 \right),$$

$$\frac{d^2 Q_s(x_s)}{dx_s^2} = \varpi_s \hat{f}_s(x_s).$$
(8)

Таким образом, матрица первых производных и матрица Гессе для Q(x) примут вид:

$$\nabla_{\mathbf{x}} Q(\mathbf{x}) = \begin{bmatrix} \varpi_{I} \left(\int_{0}^{x_{I}} \hat{f}_{I}(y) dy - I \right) \\ \dots \\ \varpi_{S} \left(\int_{0}^{x_{S}} \hat{f}_{S}(y) dy - I \right) \end{bmatrix}, \quad (9)$$

$$\nabla_{\mathbf{xx}}^{2} Q(\mathbf{x}) = \begin{bmatrix} \varpi_{I} \hat{f}_{I}(x_{I}) \\ \dots \\ \varpi_{S} \hat{f}_{S}(x_{S}) \end{bmatrix},$$

где недиагональные элементы $\nabla^2_{xx}Q(x)$ равны нулю.

Поскольку $\hat{f}_s(x_s) \ge 0$, $\forall s = \overline{1,S}$, то матрица

Гессе $\nabla^2_{xx}Q(\mathbf{x})$ положительно полуопределена. Утверждение доказано.

Следствие 1. Поскольку функция $\hat{f}_{s}(x_{s})$ положительна ($\hat{f}_{s}(x_{s}) > 0$) для всех $x_{s} > 0$, $\forall s = \overline{1,S}$, то интегральная функция $Q(\mathbf{x})$ строго выпукла.

Доказательство. Если функция $\hat{f}_s(x_s) > 0$ для всех $x_s > 0$, $s = \overline{1,S}$, то получаем выполнение условия положительной определенности матрицы Гессе $\nabla^2_{xx}Q(\mathbf{x})$ для функции

$$\mathbf{y}^T \nabla_{\mathbf{x}\mathbf{x}}^2 Q(\mathbf{x}) \mathbf{y} = \sum_s y_s^2 \boldsymbol{\varpi}_s f_s(\mathbf{x}_s) > 0, \ \forall \mathbf{y} \neq 0, \ (10)$$

где **у** = $(y_1, y_2, ..., y_s)$. Следствие доказано.

Следствие 2. Интегральная функция $Q(\mathbf{x})$ устойчиво выпукла по $\overline{\mathbf{X}}$.

Следствие 3. Ограничивающее неравенство $H(\mathbf{x}) \le 0$ является связывающим при оптимальном решении $\mathbf{x}^* \in \mathbf{X}$.

Доказательство. Из полученных матриц (9) очевидно, что $Q_s(x)$ является убывающей функцией от *x* для всех $s = \overline{1,S}$. Исходя из этого свойства целевой функции при $\hat{I} \to \infty$, задача имеет неограниченное множество решений $\mathbf{x}^* \to (\infty,...,\infty)$. Таким образом, введенное ограничение $H(\mathbf{x}) \le 0$ порождает ограничение и множества допустимых решений. Отметим, что ограничивающее неравенство $H(\mathbf{\tilde{o}}) \le 0$ может не быть связывающим при оптимальном целочисленном решении $\mathbf{x}^* \in \mathbf{X}^I$.

Способ решения задачи целочисленного программирования. Для решения задачи предлагается использовать метод множителей Лагранжа, позволяющий привести задачу условной оптимизации к безусловной в виде функции Лагранжа

$$L(\mathbf{x},\lambda) = Q(\mathbf{x}) + \lambda H(\mathbf{x}), \ \lambda \ge 0.$$
(11)

Утверждение 3. Допустим \tilde{o}^* и λ^* удовлетворяют следующим условиям:

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = 0, \qquad (12)$$

$$\nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = 0 , \qquad (13)$$

$$\mathbf{y}^T \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} > 0 \tag{14}$$

для всех $\mathbf{y} \neq \mathbf{0}$ с $\mathbf{y} \in \left\{ \mathbf{y} \mid \nabla H \left(\mathbf{x}^* \right)^T \mathbf{y} = \mathbf{0} \right\}$, тогда \mathbf{x}^* является устойчивым локальным минимумом.

Доказательство. Функция Лагранжа, представленная выражением (11), является выпуклой.

В этом случае с учетом полученных первых и производных (8) матрица вторых Гессе $\nabla^2_{\mathbf{x}\mathbf{x}}L(\mathbf{x}^*,\lambda^*)$ для Лагранжевой функции также является положительно определенной. Таким образом, найденные значения х* и λ^{*}, удовлетворяющие условиям (12) и (13), обеспечивают устойчивый локальный минимум функции $L(\mathbf{x},\lambda)$, который означает также, что x* обеспечивает устойчивость локального минимума $Q(\mathbf{x})$ с ограничением $H(\mathbf{x}) \leq 0$.

Оптимальные решения $(\mathbf{x}^* \in \mathbf{X}^I, \lambda^*)$ для функционала (11) вычисляются в два этапа. На первом этапе определяем действительные решения \mathbf{x}^* и λ^* , удовлетворяющие условиям (12–14)

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = \begin{bmatrix} \varpi_{I} \left(\int_{0}^{x_{I}} \hat{f}_{I}(y) dy - I \right) + \lambda d_{I} \\ \dots \\ \varpi_{s} \left(\int_{0}^{x_{s}} \hat{f}_{s}(y) dy - I \right) + \lambda d_{s} \end{bmatrix}, \quad (15)$$

$$\nabla_{\lambda} L(\mathbf{x}, \lambda) = H(\mathbf{x}), \ \nabla^{2}_{\mathbf{x}\mathbf{x}} L(\mathbf{x}, \lambda) = \nabla^{2}_{\mathbf{x}\mathbf{x}} Q(\mathbf{x}).$$
(16)

Из условия (12) и выражения (15) получаем

$$\mathbf{x}^{*} = \begin{bmatrix} F_{I}^{-l} \left(I - \frac{\lambda^{*} d_{I}}{\varpi_{I}} \right) \\ \dots \\ F_{s}^{-l} \left(I - \frac{\lambda^{*} d_{s}}{\varpi_{s}} \right) \end{bmatrix}, \quad (17)$$

где
$$F_s^{-1}(y) = \inf \{ x | F_s(x) = y \}, \quad F_s(x) = \int_0^x \hat{f}_s(y) dy ,$$

а λ^* может быть получено подстановкой (17) в (16) для $\nabla_{\lambda} L(\mathbf{x}, \lambda)$

$$\Psi(\lambda) = \sum_{s=1}^{S} d_s F_s^{-1} \left(1 - \frac{\lambda d_s}{\varpi_s} \right).$$
(18)

Из условия $\Psi(\lambda) = M$ получаем

$$\lambda^* = \Psi^{-1}(M), \qquad (19)$$

где $\Psi^{-1}(y) = \inf \{ x | \Psi_s(x) = y \}.$ Из (17, 19) окончательно получаем

$$\mathbf{x}^{*} = \begin{bmatrix} F_{l}^{-l} \left(I - \frac{d_{l}}{\varpi_{l}} \Psi^{-l}(M) \right) \\ \dots \\ F_{s}^{-l} \left(I - \frac{d_{s}}{\varpi_{s}} \Psi^{-l}(M) \right) \end{bmatrix}.$$
(20)

На втором этапе с использованием в качестве начальных оптимальных решений первого этапа определяем ближайшие целочисленные решения. Для эффективного поиска близких к оптимальным решений предлагается использовать эвристические процедуры, имеющие низкую вычислительную сложность.

1. Определяем множество номеров классов сервиса с нецелочисленными решениями $A = \{s \mid x_s^* > [x_s^*], s = \overline{1,S}\}$. Если множество A пустое, т. е. $x_s^* = [x_s^*], s = \overline{1,S}$, то решение найдено, в противном случае вычисляем освободившийся ресурс тайм-слотов $a = \sum_{s \in A} (x_s^* - [x_s^*]) d_s$ вследствие ограничений на целочисленность.

2. Для всех номеров классов сервиса $s \in A$ вычисляем коэффициент чувствительности частных штрафных функций относительно добавляемой разности к ближайшей целочисленной переменной

$$b_{s} = \frac{Q_{s}(x_{s}^{*}) - Q_{s}([x_{s}^{*}] + 1)}{d_{s}([x_{s}^{*}] + 1 - x_{s}^{*})}$$

3. Определяем класс сервиса с наибольшим коэффициентом чувствительности $j = \arg \max \{b_s, s = \overline{1, S}\}$. Контролируя условие $a \ge d_j$, обновляем значения $x_j^* = [x_j^*] + 1$, $a = a - d_j$, $A = A - \{j\}$ до тех пор, пока A = 0.

Анализ эффективности и результаты моделирования. Эффективность предлагаемого способа распределения ресурса пропускной способности оценивалась по критерию относительной близости оптимального Q^* и полученного эвристической процедурой значений интегральной целевой функции Q

$$\eta = \frac{Q - Q^*}{Q^*} (\%)$$
 (21)

методом статистических испытаний.

Исходные данные для моделирования. В составе спутниковой сети интерактивного доступа спутниковые терминалы, представленные потоками данных четырех классов сервиса $\vec{s} = (1, 2, ..., 4)$, осуществляют работу через HUB-станцию. Распределение количества PDU в очередях по каждому классу сервиса в пределах фрейма моделируется экспоненциальным законом с вектором параметров $\vec{\mu}_s$, изменяемых от фрейма к фрейму случайным образом, равномерно в диапазоне (4, 10) [PDU/фрейм]. Для аппроксимации плотности

распределения используется непараметрическая регрессионная оценка с ядром Епанечникова

$$K(z) = \begin{cases} \frac{3}{4}(1-z)^2 npu |z| \le 1; \\ 0, npu |z| > 1, \end{cases}$$
(22)

и $\alpha = 3$. Затраты ресурсов и уровень требований к качеству обслуживания представлены векторами $\vec{d} = (8, 6, 4, 2)$ [тайм-слотов/PDU] и $\vec{\varpi} = (4, 3, 2, 1)$ соответственно. Изменение доступного ресурса пропускной способности *M* [тайм-слотов] в каждом фрейме моделировалось равномерным законом в диапазоне (100, 200). Результаты моделирования на длительности 200 фреймов представлены на рисунках 3, 4.

Рисунок 3 – Соотношение оптимальных и полученных эвристическим решением значений интегральной целевой функции

Рисунок 4 – Плотность распределения показателя эффективности

Анализ результатов показывает, что в 44 % от общего количества фреймов полученные предлагаемым алгоритмом решения соответствуют оптимальным значениям интегральной целевой функции Q^* . Достаточно высокая степень близости по показателю $\eta \le 5$ % обеспе-

чивается в 90 % тестовых задач. Использование непараметрических регрессионных оценок позволяет с приемлемой точностью на малых объемах выборки аппроксимировать плотность распределения количества PDU в буфере *s*-класса сервиса с учетом ее нестационарного изменения.

Заключение. Предлагаемый способ основан на процедуре взвешенного распределения пропускной способности частотно-временного плана между спутниковыми терминалами, учитывающего уровень дифференцированных требований к качеству обслуживания источников мультимедийных данных. Динамический и стохастический характер поступления пакетных данных в буферы различных классов сервиса СТ и инерционность процесса формирования ЧВП обусловили необходимость применения непараметрических регрессионных оценок плотности распределения количества PDU и упрощения вычислительных процедур решения задачи целочисленного нелинейного программирования. Результаты моделирования алгоритма распределения пропускной способности на примере 200 тестовых задач подтверждают возможность получения близких к оптимальным решений на уровне показателя эффективности $\eta \le 5$ % в 90 % случаях при среднем времени вычисления не более 20 мс.

Библиографический список

1. *Neale J., Green R., Landovskis J.* Interactive channel for multimedia satellite networks, IEEE Commun. Mag., PP. 192-198, Mar. 2001.

2. Lee K.-D., Cho Y.-H., Lee S. J., Lee H.-J. Optimal design of su-perframe pattern for DVB-RCS return link, ETRIJ., vol. 24, no. 3, PP. 251-254, 2002.

3. *Lee K.-D., Cho Y.-H., Lee H.-J., Oh D. G.* Improving efficiency of timeslot assignment for nonrealtime data in a DVB-RCS return link: Modeling and algorithm, ETRIJ., vol. 25, no. 4, 2003.

4. Lee K.-D., Lee H.-J., Cho Y.-H., Oh D. G. Throughput-maximizing timeslot scheduling for interactive satellite multi-class services, IEEE Commun. Lett., vol. 7, PP. 263-265, June 2003.

5. Zhang T., Berg E., Chennikara J., Agrawal P., Chen J.-C., Ko-dama T. Local predictive resource reservation for handoff in multimedia wireless IP networks, IEEE J. Select. Areas Commun., vol. 19, PP. 1931-1941, Oct. 2001.

6. Leung K. K., Massey W. A., Whitt W. Traffic models for wireless communication networks, IEEE J. Select. Areas Commun., vol. 12, Oct. 1994.

7. *Химмельблау Д.* Прикладное нелинейное программирование / под ред. М. Л. Быховского. - М.: Мир, 1975. - 534 с., ил.

8. *Хардле В*. Прикладная непараметрическая регрессия. - М.: Мир, 1993. - 349 с.