С.Н. Кириллов, В.М. Бердников

МНОГОКРИТЕРИАЛЬНЫЙ СИНТЕЗ СИГНАЛОВ СПУТНИКОВЫХ НАВИГАЦИОННЫХ СИСТЕМ

Предложен алгоритм многокритериального синтеза сигналов спутниковых навигационных систем (СНС), учитывающий несколько показателей качества. Показано, что полученные сигналы обеспечивают выигрыш в отношении сигнал-шум в среднем более 4...15 дБГц при неизменной точности позиционирования и более низкий уровень боковых лепестков (УБЛ) автокорреляционной функции (АКФ) сигнала (в среднем на 21.5 %) при незначительных потерях энергии в результате фильтрации (менее 1 дБ) по сравнению с известными сигналами СНС.

Ключевые слова: многокритериальный синтез, уровень боковых лепестков, автокорреляционная функция, нижняя граница оценки псевдодальности в белом гауссовом шуме, эффективная ширина спектра, корреляционные потери, параметр оптимизации.

Введение. В настоящее время вслед за применением СНС ГЛОНАСС и GPS в различных сферах жизни страны европейского союза и КНР также создают свои собственные Galileo глобальные CHC И Compass соответственно. Для этих СНС разрабатываются и внедряются новые виды сигналов. С целью увеличения точности позиционирования, а также совместимости с используемыми в настоящее время сигналами был предложен ряд таких новых сигналов, как BOC (Binary Offset Carrier), CBOC (Composite BOC), TMBOC (Time Multiplexed BOC), VBOC (Variable BOC) [1...4]. Недостатком этих сигналов является то, что вместе с увеличением точности позиционирования увеличивается и уровень боковых лепестков АКФ сигнала, которые в некоторых случаях сравнимы с уровнем главного лепестка, что приводит к уменьшению вероятности правильного обнаружения и устойчивости схемы слежения за сигналом. Таким образом, представляет интерес многокри-териальный синтез сигналов для СНС, который учитывал бы требования как по точности позиционирования, так и по УБЛ АКФ сигнала.

Целью данной работы является многокритериальный синтез сигналов для СНС в интересах увеличения точности позиционирования и уменьшения УБЛ АКФ сигналов.

Постановка задачи. Известно [5], что нижняя граница среднеквадратического отклонения (СКО) оценки псевдодальности в белом гауссовом шуме (БГШ) определяется по формуле:

$$\sigma_R = \frac{c}{2\pi\beta_{RMS}} \sqrt{\frac{B_L}{L_{CORR} \cdot q}}, \qquad (1)$$

где *с* - скорость света, B_L - односторонняя полоса частот схемы слежения за задержкой (ССЗ), $q = C/N_0$ - отношение сигнал-шум, *С* - мощность сигнала, β_{RMS} - эффективная ширина спектра сигнала (ЭШС), определяемая выражением

$$\beta_{RMS} = \sqrt{\int_{-B/2}^{B/2} f^2 \overline{G}_S(f) df} , \qquad (2)$$

здесь $\overline{G}_{S}(f)$ - нормированная к полосе частот *В* СПМ сигнала, L_{CORR} - корреляционные потери (КрП) вследствие фильтрации сигнала, рассчитываемые по формуле

$$L_{CORR} = \int_{-B/2}^{B/2} G_S(f) df , \qquad (3)$$

где $G_S(f)$ - нормированная к бесконечной полосе частот СПМ сигнала.

Формулу (4) преобразуем к следующему виду:

$$\sigma_R = \frac{ck}{2\pi} \sqrt{\frac{B_L}{q}} , \qquad (4)$$

где $k = \frac{1}{\beta_{RMS} \sqrt{L_{CORR}}}$ - коэффициент

пропорциональности, определяемый ЭШС и КрП.

Также известно [6], что вероятность правильного обнаружения P_D при поиске сигнала зависит от его формы АКФ, в том числе

и от максимального УБЛ АКФ (особенно для сложных сигналов).

Таким образом, целесообразно выбрать следующие критерии качества:

- коэффициент k, определяющий СКО оценки псевдодальности в БГШ и зависящий от ЭШС сигнала β_{RMS} , а также от корреляционных потерь L_{CORR} (доля энергии в заданной полосе от полной энергии сигнала);

- максимальный УБЛ АКФ сигнала γ . Меньшая величина γ обеспечивает более высокую вероятность правильного обнаружения P_D для данного отношения сигнал-шум при заданной вероятности ложной тревоги P_{E4} .

Исходя из вышеизложенного, зададим функционал качества в виде:

$$F = \alpha \cdot M \cdot k + (1 - \alpha) \cdot \gamma , \qquad (5)$$

где M - масштабный коэффициент, α - параметр оптимизации, $0 \le \alpha \le 1$ определяет компромисс между наиболее важными показателями качества. Следовательно, решающее правило синтеза кодовой последовательности (КП) можно записать следующим образом:

 $F \rightarrow \min, \quad \alpha = const, \quad \Delta f = const$. (6)

Экспериментальная часть. Синтез символа КП проводился для двух наиболее часто используемых полос пропускания приемников СНС - узкополосной 6 МГц и широкополосной 14 МГц. Данный синтез можно применять и при других полосах пропускания. В качестве КП была выбрана М-последовательность, имеющая почти равномерный спектр и максимальный УБЛ периодической АКФ 1/L, где L - длина КП, равная 1023 символам. Для сравнения были рассмотрены сигналы с внутрисимвольной модуляцией КП Баркера с длинами 7, 11 и 13 элементов, также используемые а И перспективные сигналы СНС.

На данный момент в СНС (ГЛОНАСС, GPS, Galileo Compass) используются фазоманипулированные сигналы, так называемые BPSK(1) (Binary phase shift keying). Известно [3], что в дальнейшем такие системы, как GPS, европейская система Galileo, японская QZSS собираются использовать меандровые шумоподобные сигналы BOCsin(1,1), BOCcos(1,1) СВОС(6,1,1/11), ТМВОС(6,1,4/33).

Математическая запись символа BPSK сигнала имеет следующий вид:

 $s(t) = g(t)\cos(2\pi f_0 t + \pi(m-1)), m = 1, 2,$ (7) где g(t) - функция изменения огибающей символа сигнала. При этом математическая запись BOCsin сигнала:

 $S_{BOC}(t) = S(t) \cdot sign(sin(2\pi f_{sc}Nt))$, (8) где S(t) - узкополосный сигнал (в данном случае *BPSK*), $sign(sin(2\pi f_{sc}Nt))$ - расширяющий меандр [в случае BOCcos сигнала $sign(cos(2\pi f_{sc}Nt))$], f_{sc} - частота меандра, кратная 1,023 МГц, N - целое положительное число, являющееся мерой расширения сигнала.

Обычно используется запись BOC(n1, n2), где n1 и n2 – два индекса, отвечающие отношениям $n1 = f_{sc}/f_c = N$, $n2 = f_c$ МГц, где f_c - частота кодовой последовательности (КП) навигационного сигнала (равная 1,023 МГц или кратная ей).

В случае CBOC(6,1,1/11) сигнала математическая запись имеет вид:

$$S_{CBOC(6,1,1/11)}(t) = \sqrt{10/11 * S_{BOC(1,1)}(t)} + \sqrt{1/11} * S_{BOC(6,1)}(t).$$
(9)

Как следует из анализа выражения (9), символ CBOC(6,1,1/11) сигнала является весовой суммой символов BOC(1,1) и BOC(6,1) сигналов.

сигналов

ТМВОС(6,1,4/33) сигнал отличается от CBOC(6,1,1/11) сигнала тем, что сигнал разделен на части по 33 символа, в каждой в которых 4 символа ВОС(6,1) сигнала и 29 символов ВОС(1,1) сигнала. Сигнал VBOC(2,1,0.1), рекомендованный для СНС, представлен в [4].

АКФ и спектральные плотности мощности (СПМ) используемых и перспективных сигналов СНС представлены на рисунках 1 и 2 соответственно.

Рисунок 2 - СПМ соответствующих сигналов

Процедура синтеза символа КП включает следующие этапы.

1. Символ КП делится на *К* импульсов равной длительности. Величина *К* определяет временные затраты при синтезе, с одной стороны, и качество (вместе с тем и сложность) синтеза с другой, что является противоречивыми требованиями.

2. Проводится многокритериальный синтез методом покоординатного спуска внутрисимвольной КП длиной $K = \{10, 16, 20, 40, 80\}$ в соответствии с функционалом (5) по решающему правилу (6) для выбранного частотного ресурса Δf .

3. Параметр оптимизации α меняется с шагом 0.05. Строятся зависимости $M \cdot k(\alpha)$, $\gamma(\alpha)$ и определяются оптимальные значения α для различных K.

4. Определяется наилучшее по показателям качества значение коэффициента α среди всех K. Для данного значения α рассчитываются характеристики сигнала и строится зависимость $\sigma_R(q)$. Оцениваются сравнительные характеристики.

Для синтезированной внутрисимвольной КП, соответствующей оптимальному значению α , рассчитывалась зависимость нижней границы СКО оценки псевдодальности в БГШ $\sigma_R(C/N_0)$ от отношения сигнал-шум. Зависимости критериев качества от коэффициента α при K = 40 и $\Delta f = 6$ МГц представлены на рисунке 3. В результате анализа целесообразно выбрать значение коэффициента $\alpha = 0.55$.

Из анализа рисунка 3 следует, что при значениях коэффициента $\alpha > 0.55$ происходит резкое увеличение УБЛ АКФ сигнала γ при относительно медленном уменьшении значения $M_{SCALE} \cdot k$.

В таблице 1 представлены значения $M \cdot k$, γ , β_{RMS} и L_{CORR} для синтезированных сигналов в сравнении с известными ранее при $\Delta f = 6 \text{ MF } \mu$.

Из анализа таблицы 1 следует, что при увеличении К снижаются корреляционные потепри незначительных изменениях ри LCORR остальных параметров. Также видно, что синтезированный при K = 40и $\alpha = 0.55$ сигнал обеспечивает большую точность (исходя из значения $M \cdot k$) среди всех рассмотренных сигналов, кроме сигнала, полученного при K = 80и $\alpha = 0.7$, а также наименьший после сигнала Баркер-7 (у = 0.14) максимальный УБЛ АКФ сигнала, равный 0.18, (сигналы BPSK(1), Баркер-11 и Баркер-13 не рассматриваются, так как в первом случае имеется слишком низкая точность позиционирования, а во втором и третьем недопустимо высокие корреляционные потери) при этом корреляционные потери при фильтрации на 0.22 дБ меньше, чем у сигнала Баркер-7.

•				
	$M \cdot k$	γ	$eta_{\it RMS}$ МГц	L _{CORR} дБ
BPSK(1)	1,82	9e-4	0,56	-0,15
BOCsin(1,1)	1,11	0,5	0,96	-0,53
BOCcos(1,1)	0,76	0,5	1,43	-0,72
VBOC(2,1,0.1)	0.79	0,35	1,39	-0,82
CBOC(6,1,1/11)	1,12	0,46	0,98	-0,78
TMBOC(6,1,4/33)	1,19	0,41	0,97	-1,22
Баркер-7	0,74	0,14	1,59	-1,46
Баркер-11	0,84	0,09	1,71	-3,10
Баркер-13	0,98	0,08	1,54	-3,63
$K = 10 \ \alpha = 0.6$	0,71	0,20	1,76	-1,92
$K = 16 \alpha = 0.6$	0,69	0,19	1,86	-2.14
$K = 20 \ \alpha = 0.65$	0,67	0.20	1.74	-1.31
$K = 40 \ \alpha = 0.55$	0,68	0.18	1.69	-1.24
$K = 80 \ \alpha = 0.7$	0,65	0.26	1.78	-1.26

Таблица 1 – Характеристики сигналов при $\Delta f = 6 \,\mathrm{MFu}$

Зависимости нижней границы СКО оценки псевдодальности в БГШ σ_R от отношения сигнал-шум $q = C/N_0$ для синтезированного и известных ранее сигналов представлены на рисунке 4.

Рисунок 4 - Зависимости нижней границы СКО оценки псевдодальности в БГШ σ_R от отношения сигнал-шум q для синтезированных и известных ранее сигналов при $\Delta f = 6$ МГц

Из анализа рисунка 4 следует, что синтезированный сигнал при той же точности позиционирования обеспечивает выигрыш в отношении сигнал-шум 3...10 дБГц по сравнению с сигналами Баркер-7 и BOCcos(1,1), при этом УБЛ АКФ по сравнению с сигналом BOCcos(1,1) на 32 % меньше, а корреляционные потери больше на 0.54 дБ. По сравнению с другими сигналами выигрыш в отношении сигнал-шум еще больше, УБЛ АКФ меньше в среднем на 26 %, а корреляционные потери не превышают 1 дБ.

Огибающая АКФ и СПМ синтезированного для $\Delta f = 6$ МГц сигнала при K = 40 и $\alpha = 0.55$ представлены на рисунке 5.

Рисунок 5 – Огибающая АКФ и СПМ сигнала, синтезированного при $\Delta f = 6$ МГц для $\alpha = 0.55$

Зависимости критериев качества от коэффициента α при K = 40 и $\Delta f = 14$ МГц представлены на рисунке 6. В этом случае целесообразно выбрать $\alpha = 0.75$.

Из анализа рисунка 6 следует, что при значениях коэффициента $\alpha > 0.75$ происходит резкое увеличение УБЛ АКФ сигнала γ при относительно медленном уменьшении значения $M \cdot k$.

В таблице 2 представлены значения $M \cdot k$, γ , β_{RMS} и L_{CORR} для синтезированных сигналов

и известных ранее при $\Delta f = 14 \text{ M}\Gamma$ ц.

1 аолица	2	—	ларактеристики	сигналов	при
$\Delta f = 14 \text{ MT}$	ц				

	$M \cdot k$	γ	$eta_{\it RMS}$ МГц	L _{CORR} дБ
BPSK(1)	1,19	9e-4	0,84	-0,06
BOCsin(1,1)	0,72	0,5	1,42	-0,21
BOCcos(1,1)	0,53	0,5	1,96	-0,32
VBOC(2,1,0.1)	0,58	0,35	1,81	-0,37
CBOC(6,1,1/11)	0,54	0,46	1,89	-0,25
TMBOC(6,1,4/33)	0,42	0,41	2,46	-0,32
Баркер-7	0,44	0,14	2,37	-0,43
Баркер-11	0,35	0,09	3,14	-0,75
Баркер-13	0,33	0,08	3,43	-1,03
$K = 10 \ \alpha = 0.3$	0,36	0.10	2.94	-0.44
$K = 16 \ \alpha = 0.8$	0,31	0.19	3.84	-1.44
$K = 20 \ \alpha = 0.85$	0,25	0.30	4.52	-1.18
$K = 40 \ \alpha = 0.75$	0,25	0.25	4.54	-1.17
$K = 80 \ \alpha = 0.9$	0,23	0.38	4.88	-0.97

В результате анализа таблицы 2 можно сделать вывод, что при увеличении К у сигналов синтезированных снижаются корреляционные потери при незначительных изменениях остальных параметров. Также видно, что синтезированный при K = 40 и $\alpha = 0.75$ сигнал обеспечивает большую точность (исходя из значения $M \cdot k$) среди всех рассмотренных кроме сигналов, сигнала. полученного при K = 80 и $\alpha = 0.9$, а также наименьший после сигналов Баркера $(\gamma = 0.08...0.14)$ максимальный УБЛ АКΦ сигнала, равный 0.25, (сигнал BPSK(1) не рассматривается, так как он имеет слишком низкую точность позиционирования).

Следует отметить, что в результате синтеза для $\Delta f = 14$ МГц получены сигналы, у которых значения $M \cdot k$ и γ были достаточно низкими, но обладали большими корреляционными потерями L_{CORR} (-3...-6 дБ). Это является результатом того, что при больших частотных ресурсах $\Delta f > 12$ МГц ЭШС β_{RMS} растет значительно быстрее, чем L_{CORR} вследствие пропорциональности квадрату частоты [см. выражения (5), (6) и (7)] и, таким образом, повышает точность позиционирования.

Зависимости нижней границы СКО оценки псевдодальности в БГШ σ_R от отношения сигнал-шум *q* для синтезированного и известных ранее сигналов при $\Delta f = 14$ МГц представлены на рисунке 7.

Из анализа рисунка 7 следует, что синтезированный сигнал при той же точности позиционирования обеспечивает выигрыш в отношении сигнал-шум 5...20 дБГц по сравнению с сигналами Баркер-11 и Баркер-13, при этом УБЛ АКФ в среднем больше на 16.5 %, а корреляционные потери на 0.28 дБ. По сравнению с другими сигналами выигрыш в отношении сигнал-шум еще больше, УБЛ АКФ меньше в среднем на 14.3 %, а корреляционные потери не превышают 1 дБ.

Огибающая АКФ и СПМ синтезированного для $\Delta f = 14$ МГц сигнала при K = 40 и $\alpha = 0.75$ представлены на рисунке 8.

Рисунок 8 – Огибающая АКФ и СПМ сигнала, синтезированного при $\Delta f = 14$ МГц для $\alpha = 0.75$

Синтезированная внутрисимвольная КП при $\Delta f = 14$ МГц, K = 40 и $\alpha = 0.75$ имеет следующий вид:

Выводы. В результате данной работы при ограничениях на частотный ресурс 6 и 14 МГц были получены следующие качественные характеристики системы.

Для $\Delta f = 6 M \Gamma$ ц:

при K = 40, $\alpha = 0.55$ был синтезирован сигнал, у которого при одинаковой нижней границе СКО оценки псевдодальности в БГШ по сравнению с известными сигналами выигрыш в отношении сигнал-шум составляет минимум 3...10 дБГц. Данный сигнал имеет самый низкий УБЛ АКФ (проигрывая только сигналу Баркер-7 0.04 %) меньший в среднем на 26 % по сравнению с известными ранее сигналами при корреляционных потерях не более 1 дБ.

Для $\Delta f = 14$ МГц:

при K = 40, $\alpha = 0.75$ был синтезирован сигнал, у которого при одинаковой нижней границе СКО оценки псевдодальности в БГШ по сравнению с сигналами Баркер-11, Баркер-13 выигрыш в отношении сигнал-шум составляет минимум 5...20 дБГц, при этом УБЛ АКФ в среднем больше на 16.5 %, а корреляционные потери на 0.28 дБ. По сравнению с другими известными ранее сигналами СНС УБЛ АКФ меньше в среднем на 14.3 %, а корреляционные потери не превышают 1 дБ. Из анализа результатов синтеза для $\Delta f = 14 \text{ M}\Gamma$ ц следует, что для большого частотного ресурса разбиение показателя качества $M \cdot k$ на два отдельных соответствующих β_{RMS} и L_{CORR} может дать лучшие результаты.

Библиографический список

1. Бердников В.М. Анализ помехоустойчивости существующих и перспективных сигналов спутниковых навигационных систем // Вестник РГРТУ №3, 2008. Вып. 25. – С. 36-39.

2. *Betz J.W.* The Offset Carrier Modulation for GPS Modernization, Proceedings of The Institute of Navigation's National Technical Meeting, January 1999.

3. G. W. Hein, J. Rodriguez, S. Wallner, J. W Betz, C. J. Hegarty, J. Rushanan, A. L. Kraay, A. R. Pratt, Lt S. Lenahan, J. Owen, J. L. Issler, T. A. Stansel. "MBOC: The New Optimized Spreading Modulation recommended for Galileo L1 OS and GPS L1c", InsideGNSS Vol 1, Number 4, May/June 2006.

4. Ilir F. Progri, Member ION, Giftet Inc., Pomona, CA Matthew C. Bromberg, Elected Engineering, MA William R. Michalson, Member ION. A Theoretical Survey of the Spreading Modulation of the New GPS Signals (L1C, L2C, and L5). University of New South Wales, Sydney, Australia.

5. *Кук Ч., Бернфельд М.*. Радиолокационные сигналы. Пер. с английского под ред. В. С. Кельзона.-М.: Изд-во «Советское радио», 1971. - 568 с.

6. Варакин Л.Е.. Системы связи с шумоподобными сигналами. – М.: Радио и связь, 1985. – 384 с., ил.