### УДК 621.385.623.2

# О.А. Горлин, В.Ю. Мишин, В.К. Федяев, А.А. Шишков ПРОЕКТИРОВАНИЕ МНОГОЛУЧЕВОГО АВТОГЕНЕРАТОРА СВЧ НА ДВУХЗАЗОРНОМ РЕЗОНАТОРЕ

С использованием программ разного уровня проведено проектирование многолучевого генератора на двухзазорном резонаторе с учетом реального распределения электрических полей в зазорах по радиальной и продольной координатам. Показано, что за счет неоднородности полей в реальной конструкции электронный КПД автогенератора на нулевой зоне нулевого вида по сравнению с однолучевой конструкцией уменьшается с 39 % до 34 % при КПД в нагрузку 31 %.

**Ключевые слова:** автогенератор, СВЧ, коэффициент полезного действия, двухзазорный резонатор.

Введение. В последнее время в связи с широким применением микроволнового излучения для промышленных и технологических целей появилась потребность в источниках СВЧ энергии средней и большой мощности простой конструкции с достаточно высоким КПД. Наиболее простым по конструкции автогенератором является монотрон. Для монотрона классической конструкции с однородным полем предсказывается электронный КПД 18 % [1,2]. Для монотрона сложной конструкции со ступенчатым изменением поля численным моделированием получен электронный КПД 47.5 % [3]. Но при этом амплитуда напряжения на второй ступени необычно высока, она в 7.5 раза больше ускоряющего напряжения.

Альтернативой монотронным конструкциям может быть генератор на двухзазорном резонаторе, работающий на π- или 0-виде колебаний с амплитудами напряжений на зазорах, близкими к ускоряющему напряжению. Получены уравнения, разработана методика, составлены программы для исследования автогенератора на двухзазорном резонаторе. В нелинейном режиме численным моделированием на *п*-виде для первой зоны колебаний был получен максимальный электронный КПД 51 % [4], для нулевого вида 0-зоны КПД составил 39 % и для 1-й зоны – 57 % [5]. Для конструкции с однородным полем в зазорах эти результаты можно считать предельными. В дальнейшем будем исследовать нулевую зону, потому что, как показали дальнейшие расчеты, на первой зоне л- или 0-вида резонатор в сантиметровом диапазоне длин волн будет иметь слишком малое характеристическое сопротивление (около

10 Ом) из-за малого объёма индуктивной части. В реальной многолучевой многорядной конструкции условия взаимодействия электронных потоков с полем будут сложнее. Из-за изменения высокочастотного поля по радиусу зазора электроны лучей разных рядов взаимодействуют с напряжениями разной амплитуды. Наиболее значительно это проявляется при большом относительно длины волны диаметре пролетной многолучевой трубы. Кроме того, из-за изменения поля по продольной координате зазора изменяются оптимальные расстояния между зазорами, полученные для однородного по длине поля. В результате оптимальные по КПД режимы для лучей разных рядов оказываются разные. Усредненный по всем лучам максимальный КПД будет соответствовать некоторому компромиссному режиму.

**Целью работы** является исследование влияния этих факторов на КПД многолучевого автогенератора и разработка методики проектирования области взаимодействия с их учетом.

Расчетные соотношения. Общий КПД находится как произведение электронного и контурного КПД:

$$\eta = \eta_e \eta_k \,. \tag{1}$$

Расчет электронного КПД проводится через наведенный ток:

$$\eta_{e0} = \frac{P_{ea}}{I_0 U_0} = \frac{1}{2} \xi I_1^{\text{HOP}}, \qquad (2)$$

где  $P_{ea}$  – активная составляющая мощности,  $I_0$  – ток луча,  $U_0$  – ускоряющее напряжение,  $\xi = U_m / U_0$  – нормированная амплитуда переменного напряжения,  $I_1^{\text{нор}}$  – относительная

амплитуда активной составляющей первой гармоники наведенного тока. Расчет производится для лучей, расположенных в двух рядах на окружностях разного радиуса. Общий электронный КПД определяется по формуле:

$$\eta_e = \frac{\eta_{_{\theta hymp}} n_{_{\theta hymp}} + \eta_{_{\theta hem}} n_{_{\theta hem}}}{n_{_{\theta hymp}} + n_{_{\theta hem}}},$$
(3)

где  $\eta_{shymp}$  и  $\eta_{sheu}$  – электронный КПД для лучей внутреннего и внешнего рядов,  $n_{shymp}$  и  $n_{sheu}$  – число лучей внутреннего и внешнего ряда. Расчет контурного КПД ведется по формуле:

$$\eta_{k} = 1 - \frac{Q_{\mu}}{Q_{0}} = 1 - \frac{R_{\mu}}{R_{\mu}} = 1 - \frac{\xi^{2} R_{0}}{2\eta_{e} Q_{0} \rho}, \qquad (4)$$

где  $R_{_{3H}} = Q_{_H}\rho = \frac{\xi^2 R_0}{2\eta_e}$  – эквивалентное нагру-

женное сопротивление резонатора,  $R_3 = Q_0 \rho$  – эквивалентное сопротивление резонатора,  $Q_{\mu}$ ,  $Q_0$  – нагруженная и холодная добротность резонатора,  $\xi = \xi_1 + \xi_2$  – общее нормированное напряжение,  $R_0 = U_0 / I_0$  – сопротивление луча,  $\rho$  – характеристическое сопротивление резонатора.

Таким образом, из формул (1) и (4) получим:

$$\eta = \eta_e - \left(\frac{\xi^2}{2}\right) \left(\frac{R_0}{\rho Q_0}\right). \tag{5}$$

Методика и последовательность проектирования. На рисунке 1 приведено схематическое изображение двухзазорного резонатора с 15 отверстиями для прохождения электронных лучей, расположенных в двух рядах.



#### Рисунок 1 – Схематическое изображение двухзазорной многолучевой конструкции резонатора

Диаметр  $2r_T$  "втулки" пролетной трубы с отверстиями диаметром 2a и их расположение были заданы базовой конструкцией многолучевой электронно-оптической системы. Внешний радиус резонатора  $r_{_{6H}}$ , длины зазоров  $d_1$  и  $d_2$ , выступ пролетной трубы  $\delta$  и длину пространства группирования l можно было менять в процессе проектирования. Первеанс одного луча базовой конструкции ЭОС равен 0.3 мкА/В<sup>3/2</sup>.

Проектирование проводилось с использованием разработанного на кафедре ЭП РГРТУ комплекса программ разного уровня для моделирования электронных процессов и программы аксиально-симметричных расчета электродинамических систем. Ниже приводится последовательность применения программ при проектировании автогенератора на нулевой зоне нулевого (синфазного) вида колебаний. Предварительно с целью определения максимально возможного значения электронного КПД оптимизационные расчеты проводились по программе, основанной на одномерной модели без учета пространственного заряда [6]. Результаты приведены в таблице 1, вариант 1. Получен электронный КПД 39.5 %.

| Таблица | 1 |
|---------|---|
|---------|---|

| Варианты | <i>D</i> <sub>1</sub> ,<br>рад | <i>L,</i><br>рад | <i>D</i> <sub>2</sub> ,<br>рад | ξı   | ξ2   | $\eta_e, \ \%$ |
|----------|--------------------------------|------------------|--------------------------------|------|------|----------------|
| 1        | 4.25                           | 0.96             | 1.52                           | 1.58 | 1.47 | 39.5           |
| 2        | 4.25                           | 0.96             | 1.52                           | 1.58 | 1.47 | 31             |
| 3        | 4.02                           | 1.1              | 0.96                           | 1.65 | 1.69 | 39             |
| 4        | 4.02                           | 1.8              | 0.96                           | 1.65 | 1.69 | 34             |

При этом КПД выходного зазора составил 51.7 %, а уменьшение общего КПД до 39.5 % связано с потерями энергии на скоростную модуляцию в первом зазоре длиной 4.25 рад, которые составили 11.2 %. Здесь и далее геометрические размеры и амплитуды напряжений на зазорах  $U_m$  приводятся в нормированном виде:  $D_1 = \gamma d_1$ ,  $D_2 = \gamma d_2$ ,  $L = \gamma l$ ,  $\Delta = \gamma \delta$ ,  $R_T = kr_T$ ,  $R_{\rm GH} = kr_{\rm GH}$ ,  $\gamma = \omega/9_0$ ,  $k = \omega/c = 2\pi/\lambda$ ,  $9_0 = \sqrt{2eU_o/m}$ ,  $\xi_1 = U_{m1}/U_0$ ,  $\xi_2 = U_{m2}/U_0$ .

Затем оптимизационные расчеты проводились по программе, основанной на многослойной двумерной модели потока из деформируемых элементов, учитывающей пространственный заряд и поля реальных зазоров [7]. Все расчеты выполнялись при  $\gamma a = 0.7$ ,  $R_T = 1.3$  и коэффициенте заполнения пролетных отверстий с электронным потоком b/a = 0.6.

Сначала с целью выявления влияния неоднородности поля бессеточного зазора на процессы взаимодействия расчет КПД для одного луча был проведен при тех же размерах и режиме, что и в варианте 1 таблицы 1. Был получен КПД 31 % (вариант 2 в таблице 1). Затем были определены оптимальные размеры и режимы бессеточных зазоров и трубы дрейфа, обеспечивающие максимальный КПД 39 % (вариант 3 в таблице 1). Из-за провисания поля в отверстиях пролетных каналов длина первого зазора уменьшилась с 4.25 рад до 4.02 рад, а второго – с 1.52 рад до 0.96 рад.

На следующем этапе по программе расчета азимутально-симметричных видов колебаний [8] подбиралась геометрия резонатора, в котором обеспечивались бы полученные в оптимизированном варианте 3 углы пролета и необходимое соотношение амплитуд напряжений на зазорах. Длины зазоров  $D_1$ ,  $D_2$  и длина трубы дрейфа Lоставались неизменными. Требуемое соотношение напряжений подбиралось изменением длины выступа трубы  $\Delta$  в конце резонатора. Требуемая резонансная частота поддерживалась изменением диаметра внешней трубы 2r<sub>вн</sub>. Одновременно определялось характеристическое сопротивление резонатора. На рисунке 2 приведены распределения ВЧ потенциала вдоль оси резонатора для разных значений длины выступа  $\Delta$ .



Рисунок 2 – Распределение потенциала вдоль оси резонатора: 1 –  $\Delta$  =0 рад; 2 –  $\Delta$  =0.75 рад; 3 –  $\Delta$  =3.76 рад; 4 –  $\Delta$  =11.7 рад; 5 –  $\Delta$  =15 рад

Следующий фактор, который необходимо учитывать при анализе процессов в многолучевой многорядной конструкции, это изменение высокочастотного потенциала по радиусу зазоров (примерно как в радиальной линии). В исследуемой конструкции в первом зазоре амплитуда напряжения для лучей внутреннего ряда по отношению к амплитуде напряжения на оси резонатора уменьшается в 1.1 раза, а для лучей внешнего ряда уменьшается в 1.3 раза. На рисунке 3 показаны зависимости электронного КПД для внутренних (кривая 1) и внешних (кривая 2) лучей от нормированной амплитуды  $\xi_1$  напряжения на оси резонатора для первого зазора.



Рисунок 3 – Зависимость электронного КПД от нормированной амплитуды напряжения первого зазора: 1 – для внутреннего ряда, 2 – для внешнего ряда

Как видно из рисунка 3, условия получения максимального КПД в каждом ряду лучей разные. В таблице 2 приведены оптимизированные по усредненному КПД амплитуды напряжений на первом и втором зазорах для внутренних лучей  $\zeta'$  и внешних лучей  $\zeta''$ .

# Таблица 2

| $\xi_I$ | ξι'  | $\xi_l$ " | $\xi_{l}'$ | $\xi_l$ " | $\eta_{el}$ | $\eta_{e2}$ | $\eta_e$ |
|---------|------|-----------|------------|-----------|-------------|-------------|----------|
| 2.1     | 1.97 | 2.06      | 1.6        | 1.7       | 30.1%       | 39%         | 36%      |

При этом усредненный КПД по всем лучам составил 36 %, КПД для лучей внутреннего ряда – 30 %, а для лучей внешнего ряда – 39 %. Таким образом, из-за разных условий взаимодействия для электронов лучей внутреннего и внешнего ряда произошло снижение среднего КПД на 3 % по сравнению с вариантом 3 в таблице 1.

Первый зазор имеет длину 4.02 рад, что значительно больше длины зазоров в традиционных приборах клистронного типа. В этом случае из-за замыкания силовых линий электрического поля на внешнюю трубу резонатора распределение поля в зазоре по линиям движения электронов оказывается неравномерным (рисунок 4). Напряженность электрического поля увеличивается к концу зазора. Наиболее заметно это для лучей внешнего ряда, где напряженность поля у конца зазора в 3.2 раза больше, чем у его начала (кривая 2 на рисунке 4). Это обстоятельство необходимо учитывать при расчете электронных процессов.



Рисунок 4 – Распределение электрического поля вдоль первого зазора: 1 – по оси лучей внутреннего ряда; 2 – по оси лучей внешнего ряда

Подбор оптимальных размеров осуществлялся методом последовательных приближений. Для каждой геометрии определялось распределение потенциала, и подбирались оптимальные амплитуды напряжений на зазорах. Для обеспечения этих амплитуд подбиралась новая геометрия резонатора, что приводило к изменению распределения поля. Рассчитывались электронные процессы уже с новым распределением. В результате таких расчетов получены размеры пространства взаимодействия, амплитуды напряжений и КПД, которые приведены в варианте 4 таблицы 1. Основное изменение произошло в длине пролетных каналов L, которые изменились с 1.1 рад до 1.8 рад. Объясняется это тем, область интенсивного взаимодействия что смещается в сторону большей напряженности по направлению движения электронов, то есть к пролетным каналам. Поэтому положение максимума конвекционного тока и расположение второго зазора, при котором выполняются условия самовозбуждения нулевого вида, смещаются в том же направлении, и электронный КПД при этом уменьшился до 34 %. Оценка полного КПД по мощности в нагрузку, выполненная для собственной добротности резонатора  $Q_0 = 1500$ , дает величину  $\eta = 31\%$ .

Заключение. Выполнено проектирование многолучевого генератора на двухзазорном резонаторе в сантиметровом диапазоне с учетом реального распределения электрических полей в зазорах по радиальной и продольной координатам. Показано, что в реальной конструкции КПД прибора снижается по сравнению с КПД, полученным по однолучевой модели. Это объясняется трудностями обеспечения оптимального режима работы в многолучевой двухрядной конструкции одновременно для всех электронных лучей.

## Библиографический список

1. *Barroso J.J.* Design facts in the axial monotron // IEEE Trans. Plasma Sci. 2000. Vol. 28. №.3. P. 652-656.

2. Федяев В.К., Пашков А.А. Электронная проводимость и коэффициент полезного действия плоского сверхвысокочастотного зазора в нелинейном режиме // Радиотехника и электроника. 2005. Т.50. № 3. С. 361-365.

3. *Barroso J.J.* Stepped Electric-Field Profiles in Transit-Time Tubes // IEEE Transactions on Electron Devices. 2005. Vol. 52. №5. P. 872-877.

4. Федяев В.К., Горлин О.А., Пашков А.А. Исследование электронного КПД автогенератора на двухзазорном резонаторе с зазорами разной длины // Актуальные проблемы электронного приборостроения: материалы международной научно-технической конференции. Саратов: СГТУ, 2006. С. 36-42.

5. Горлин О.А. Исследование электронного КПД двухзазорного автогенератора на первой зоне синфазном виде колебаний // Вестник РГРТУ. Рязань: РГРТУ, 2008. №1. С.125-128.

6. Федяев В.К., Пашков А.А., Кадушкин В.О. Исследование электронной проводимости и КПД двухзазорного резонатора в режимах генерации и усиления // Актуальные проблемы электронного приборостроения: материалы Международной конференции. Саратов: СГТУ, 2004. С.109-115.

7. Федяев В.К., Юркин В.И. Программа анализа двумерных динамических процессов в клистронах // Вакуумная и плазменная электроника: Межвуз. сб. науч. тр. Рязань: РРТИ. 1986. С. 101-105.

8. Шишков А.А., Васин Н.Н., Сычев В.Б. Расчет азимутально-симметричных видов колебаний в резонаторах, частично заполненных диэлектриком // Электронная техника. Сер. Электроника СВЧ 1985. Вып.5.