УДК 621.315.592.

В.А. Степанов, М.М. Афанасова СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПАРАМЕТРОВ И СВОЙСТВ ВЫРОЖДЕННОГО ЭЛЕКТРОННОГО ГАЗА В СТРУКТУРАХ INAS/ALSB И AL_xGA_{1-x}As

В настоящей работе обсуждаются эксперименты на гетероструктурах $Al_xGaAs_{1-x}(Si)/GaAs$ и InAs/AlSb с вырожденным 2D электронным газом при заполнении двух E_m и E_p подзон размерного квантования. Существенное различие двумерных электронных систем заключается в слоевой архитектуре гетероструктур и, как следствие, структуре энергетического спектра и пространственном распределении электронной плотности. Эти параметры предопределяют динамику заполнения подзон размерного квантования, и обуславливают характер внутри- и межподзонной е-е релаксации, который проявляется в явлении амплитудно-частотной модуляции осцилляций, затухании квантования Ландау.

1. Введение. Развитие нанотехнологий стимулировано разработкой полупроводниковых структур, выращиваемых методами молекулярно-лучевой эпитаксии, и созданием на их основе принципиально новых приборов и устройств электроники среднего инфракрасного диапазона, оптоэлектроники и спинтроники, широко используемых сейчас в системах хранения, передачи и обработки информации.

Получение конкретных технических решений по созданию элементной базы приборов наноэлектроники не может быть проведено без теоретических и экспериментальных исследований квантовых эффектов в наноразмерных структурах.

Наиболее исследованной двумерной структурой является гетеросистема Al_xGa_{1x}As/GaAs. Определены основные параметры структуры (концентрация, подвижность). Установлены основные механизмы рассеяния носителей тока. Развиты модельные представления о характере воздействия магнитного поля на межподзонную электрон - электронную релаксацию. Изучено и оценено квантовое время релаксации носителей заряда [1].

В данной работе большое внимание уделено структуре с двумерным электронным газом InAs/AlSb, которая мало изучена.

Цель работы – выявление общности и различий свойств и явлений для структур InAs/AlSb и Al_xGa_{1-x}As в физических условиях (сильные магнитные поля, низкие температуры), при которых становятся существенным электрон электронное взаимодействие. **2. Описание** экспериментальных образцов. Гетероструктуры, подвергнутые исследованиям, выращены по технологии эпитаксии из молекулярных пучков, на подложке из полуизолирующего GaAs в плоскости (100) AlSb/InAs/AlSb [2]. Активная часть структуры состоит из нижнего барьера AlSb толщиной 12 нм в нелегированных образцах и 40 нм в селективно легированных образцах с квантовой ямой InAs толщиной 15 нм и верхним барьерным слоем AlSb (Al_{0.8}Ga_{0.2}Sb) - 40 нм. Для некоторых образцов проводилось δ – легирование теллуром (из тигельного испарителя Ga₂Te₃) верхнего и нижнего барьеров AlSb на расстоянии 15 нм от квантовой ямы.

Образцы гетероструктуры $Al_xGa_{1-x}As/GaAs$ [1] состояли из следующих слоев: подложка GaAs(Cr), буфер i-GaAs, нелегированная прослойка i-Al_xGa_{1-x}As, слой $Al_xGa_{1-x}As$, легированный кремнием (N_{Si} =8·10²³÷2·10²⁴ м⁻³), и закрывающий слой n-GaAs, толщины слоев варьировались.

Исследования образцов проводились в сильных магнитных полях и при низких температурах по стандартной методике. Измерены поперечная ρ_{xx} и продольная ρ_{xy} компоненты тензора $\hat{\rho}$ магнитосопротивления. Выполнены измерения Холла.

3. Экспериментальные и теоретические результаты.

3.1. Зонные диаграммы наноструктур. Структура Al_xGa_{1-x}As/GaAs представляет гетеропереход и может быть аппроксимирована треугольной потенциальной ямой, с учетом изгиба

зоны поводимости вследствие взаимодействия электронов в квантовой яме гетероперехода с атомами ионизированной примеси и остаточных акцепторов в p-GaAs буферном слое. На рисунке 1, а показана энергетическая структура зоны проводимости E_c(z) одиночного гетероперехода концентрацией с легирующей примеси N_D≈2·10²⁴ м⁻³ и компенсирующей акцепторной примеси N_A ≈4·10¹⁹ м⁻². Здесь E_m и E_p – уровни размерного квантования и соответственно распределения 2D электронов $|\psi_m(z)|^2$ и $|\psi_{n,d}(z)|^2$ компонентов $\left|\psi_{p}(z)\right|^{2}$; d_{m} и d_{p} – области локализации m- и p- электронов по оси гетероструктуры. Вертикальный барьер потенциальной ямы обусловлен неоднородностью зон проводимости GaAs и AlGaAs [1].

диаграммы структур: a - Al_xGa_{1-x}As/GaAs; б - InAs/AlSb

Двумерные электроны локализуются в матрице i-GaAs, туннелируя с донорных уровней примесных атомов Si в тройном соединении $Al_xGa_{1-x}As$, отделенном нелегированной прослойкой d_{sp} *i*- $Al_xGa_{1-x}As$ от *i*-GaAs. В потенциальной яме гетероперехода энергетический спектр квантуется.

Зонная диаграмма структуры InAs/AlSb аппроксимируется прямоугольной потенциальной ямой, которую образуют запрещенные зоны симметрично расположенных барьеров AlSb и зона проводимости InAs. На рисунке 1, б представлена зонная (энергетическая) диаграмма, иллюстрирующая разрыв зон $\Delta E_c \sim 1.35$ eV. Расчет положений и энергетических уровней размерного квантования [2] выявил нелинейную зависимость E_i от k^2 , что обусловлено непараболичностью зоны проводимости InAs - материала слоя, образующего квантовую яму.

Наличие сильной непараболичности обуславливает зависимость эффективной массы от концентрации. И в отличие от гетеросистемы AlGaAs, где эффективная масса электронов остается постоянной $m^*=0.067 \cdot m_0$, в данной структуре она возрастает от $0.033 \cdot m_0$ до $0.056 \cdot m_0$ с увеличением концентрации для $n_s=(0.6 \div 3.6) 10^{12}$ см⁻².

3.2. Заполнение носителями подзон размерного квантования. Одним из важных параметров, определяющих свойства 2D электронной системы в гетеросистеме InAs/AlSb, является концентрация 2D электронов. Поэтому для понимания особенностей магнитотранспорта электронов необходимо установить характер заполнения подзон размерного квантования.

В структурах с двумерным электронным газом ожидается пороговый характер заполнения подзон размерного квантования, что обусловлено ступенчатой формой зависимости функции плотности состояний от энергии g(E) (рисунок 2).

Основное отличие этих двух структур заключается в виде функции плотности состояний для второй подзоны. На рисунке 2, б наблюдается деформация ступенчатой зависимости g(E) к закону $g(E) \sim E^{1/2}$, характерному для объемных полупроводников с 3D электронами. Причина кроется в разной размерности электронов в каждой из подзон размерного квантования (ПРК).

Условие двумерности вырожденных электронов определяется следующим выражением:

$$\mathbf{k}_{\mathrm{F}} \cdot \mathbf{d} \approx \pi, \tag{1}$$

где k_F - волновой вектор Ферми, d - длина области локализации электронов (т.е. ширина квантовой ямы). Волновой вектор Ферми определяется концентрацией носителей в каждой из подзон $k_{F_{m,p}} = \sqrt{2\pi n_{m,p}}$.

Рисунок 2 – Зависимость функции плотности состояний от энергии *g(E)* при наличии квантующего магнитного поля для структур: a -InAs/AlSb; б - Al_xGa_{1-x}As.

Выбрана серия образцов InAs/AlSb с двумя заполненными подзонами с активным каналом d=150 Å: $n_m=2.7\cdot10^{12}$ см⁻², $k_{F_m}=4.11\cdot10^{10}$ см⁻¹ и $n_p=0.6\cdot10^{12}$ см⁻², $k_{F_n}=1.94\cdot10^{10}$ см⁻¹.

Произведение $k_{F_m} \cdot d$ ($k_{F_p} \cdot d$) равно 0.62 (0.29), что существенно меньше значения π . Таким образом, можно сделать вывод, что носители заряда в структуре InAs/AlSb обладают свойствами двумерного электронного газа.

Расчеты энергетической диаграммы Al_xGa_{1-x}As/GaAs, представленной на рисунке 1, а, с использованием стандартной техники для параметров $N_D \approx 2 \cdot 10^{24} \text{ м}^{-3}$, $N_A \approx 2 \cdot 10^{21} \text{ м}^{-3}$ показывают, что $d_m \approx 60$ Å, $d_p \approx 240$ Å. Для концентраций $n_m \approx 10^{16}$ м⁻² и $n_p \approx 10^{15}$ м⁻² величины $k_{Fm}^{-1} \approx 40$ Å и $k_{F_D}^{-1} \approx 100$ Å. Таким образом, для 2D электронов E_m подзоны $d_m \approx k_{Fm}^{-1}$, а для электронов E_p подзоны $k_{Fp}^{-1} < d_p$ [1]. В структуре Al_xGa_{1-x}As/GaAs при условии заполнения двух подзон размерного квантования для Е_р подзоны условие двумерности электронов нарушается, так как длина локализации $d_p \le k_{F_p} \cdot \pi$. Функция плотности состояний трансформируется по форме и становится

близкой к объемным аналогам, а электроны являются квазидвумерными.

Вид функции плотности состояний позволяет высказать предположение о том, что для структуры InAs/AlSb порог заполнения второй подзоны размерного квантования должен быть определен достаточно четко.

Отметим, что при небольшом уровне легирования $0.86 \cdot 10^{18}$ см⁻³ (для структуры $Al_xGa_{1-x}As$ эта величина составляет $N_{Si}=3\cdot 10^{18}$ см⁻³) заполняются две подзоны, что позволяет исследовать эффекты, связанные с проявлением межподзонного взаимодействия.

3.3. Резонансная модуляция амплитуды осцилляций. Амплитудно-частотная модуляция проявляется в структурах с двумя заполненными подзонами размерного квантования при наличии межподзонного *e* - *e* взаимодействия, имеющего резонансный характер.

Амплитуда осцилляций определяется числом носителей, принимающих участие в проводимости. Изменение амплитуды осцилляций (глубина модуляции) связано с наложением на гармонику основной частоты возбужденной гармоники и зависит от вклада в проводимость носителей заряда второй подзоны. Глубина амплитудной модуляции осцилляционных кривых различна, определяется соотношением концентраций в основной и возбужденной подзонах размерного квантования и зависит от заселенности E_m и E_p подзон размерного квантования, т.е. от соотношения концентраций n_m / n_p .

Для серии образцов InAs/AlSb, представленных на рисунке 3, а, соотношение концентраций составило: $n_m = 3 \cdot n_p$. Для исследованных образцов $n_m = (2.5 \div 6) \cdot n_p$ [3], тогда как для системы Al_xGa_{1-x}As (рисунок 3, б) $n_m \approx 10 \cdot n_p$. Уменьшение соотношения n_m / n_p приводит к более значительной модуляции осцилляций по амплитуде и частоте, а значит, следует ожидать, что в структурах InAs/AlSb электрон – электронное взаимодействие интенсивнее.

В квантующем магнитном поле включение межподзонного *e-е* взаимодействия носит резонансный характер при определенном соотношении концентраций n_m и n_p [4, 5]. В магнитом поле $B_{m,p}$, когда уровень Ферми пересекают одновременно (по магнитному полю) уровни Ландау N_m и N_p подзон E_m и E_p , условия для межподзонного *e-е* взаимодействия наиболее благоприятны. В этом случае максимумы функции плотности состояний $g_m(E)$ и $g_p(E)$ локализуются на $E_m(N_m)=E_p(N_p)=\xi$ - уровне энергии Ферми.

Магнитное поле, соответствующее резонансному выходу $N_{\rm m}$ и N_p уровня Ландау на уровень Ферми, определяется формулой:

$$B_{m,p} = \frac{\pi \hbar \Delta n_{m,p}}{e \Delta N_{m,p}}, \qquad (2)$$

где $\Delta n_{m,p} = n_m - n_p$, $\Delta N_{m,p} = N_m - N_p$.

Выражение (2) следует из соотношений

$$\xi_{m,p} = \left(e\hbar / m^{*}\right) B_{m,p} \left(N_{m,p} + \frac{1}{2}\right), \qquad (3)$$

$$\xi_{m,p} = \pi \hbar^{2} n_{m,p} / m^{*}, \qquad (4)$$

$$\zeta_{m,p} = \pi h^2 n_{m,p} / m ,$$

Рисунок 3 – Осцилляции поперечного магнитосопротивления с графическим разделением гармоник: 1 - экспериментальная зависимость $\rho_{xx}(B)$, $2,2^*$ - огибающие, 3 - вторая гармоника (осц. $\rho_{xx}(B)$ второй подзоны), 4 – монотонный компо-

Hehr (T=4.2 K): a - $n_m(n_p)$ =12.4 (6.08)·10¹¹ cm⁻², 6 -

$$AI_xGa_{1-x}As n_m(n_p) = 10.8 (1.04) \cdot 10^{11} \text{ cm}^{-2}$$

Выполнены оценки резонансных полей согласно (2) и данным рисунка 4, а, для образцов гетероструктуры серии №2 InAs/AlSb Δn_{mp} =1.2·10¹²см⁻². Из рисунка 4, а видно, что резонансы следует ожидать для величин $\Delta N_{m,p}$, близких к ($N_m;N_p$), (15;5), (12;4), (9;3), (6;2). Результат оценок величин 1/ $B_{m,p}$ согласно (2) для указанных значений $\Delta n_{m,p}$ и $\Delta N_{m,p}$ следующий: 0.40, 0.32, 0.24 и 0.16 Тл⁻¹. Эти величины хорошо согласуются с экспериментом (рисунок 4, а).

С увеличением магнитного поля *В* уровни Ландау *N_m* и *N_p* подтягиваются к уровню Ферми.

Функции плотности состояний $g_m(E)$ и $g_p(E)$, хотя имеют δ -образный профиль, но с определенной асимметрией (вытянутость в область больших энергий).Их перекрытие на уровне Ферми приводит к инициированию магнитным полем межподзонного е-е взаимодействия. Таким образом, на участках δ (1/В) серии I (a, c, e, g) кроме внутриподзонного е-е взаимодействия в столкновительное уширение включается межподзонное взаимодействие. Затухание квантования Ландау $\tau_q^{a,c,e,g}$ контролируется τ_{ee}^m , τ_{ee}^p и τ_{ee}^{mp} . При выходе N_m и N_p уровней Ландау за уровень Ферми (граница $g_m(B)$ и $g_p(E)$ резкая) магнитное поле «выключает» межподзонное е-е взаимодействие. Следовательно, на участках серии II(b, d, f) столкновительное уширение контролируется лишь внутриподзонным е-е взаимодействием $\tau_{q}^{b,d,f}(\tau_{ee}^{m},\tau_{ee}^{p})$. Существенно большая контрастность резонансов δ (1/B)_{T=const} на рисунке 4, а гетеросистемы InAs/AlSb по отношению к Al_xGa₁. _хAs/GaAs (рисунок 4, б) [4, 5] обусловлена двумя причинами. Для арсенид-галлиевой гетеросистемы электроны Е_p подзоны являются квазидвумерными и функция плотности состояний g_p(E) (рисунок 2, б) близка к объемной, что и обеспечивает относительную плавность переходов с участков серии I(a, c, e, g) на серию II(b, d, f). В исследуемой гетероструктуре InAs/AlSb электроны *Е_т* и *Е_p* подзон – двумерные, функции плотности состояний $g_{m,p}(E)$ - имеют δ -образную форму (с уширением $k(T+T_D)$). Тепловое и столкновительное уширение в реализуемых условиях опыта существенно меньше энергетического зазора между уровнями Ландау: $k(T+T_D) < \hbar \omega$ и δ образность $g_{m,p}(E)$ отчетливо проявляется в переходах «*a-b*», «*c-d*» и «*e-f*» на рисунке 4, а. С другой стороны, распределение электронной плотности $\left|\psi_{m,p}(z)\right|^2$ в квантовой яме гетероструктуры InAs/AlSb симметрично (рисунок 1, б), и возмущающий потенциал ионизованных примесей δ -Те (а именно этот механизм и является формирующим столкновительное уширение) воспринимает вся 2D электронная *m*-и *p*-система. В потенциальной яме гетероперехода Al_xGa_{1-x}As/GaAs [5] распределение $\left|\psi_{m,p}(z)\right|^2$ (рисунок 1, а) несимметрично. Внешнее возмущение воспринимает лишь незначительная часть: псателлит, p- компонента 2D электронов (рисунок 1, а).

Рисунок 4 – Графики Дингла –

зависимости нормированной на конечную темпеопыта амплитуды осцилляции ратуру $\ln[\delta (I/B)/(x/shx)]$ от обратного магнитного поля 1/B основной E_m (1) и возбужденной E_p (2) подзон размерного квантования. Штрихпунктирные линии 1* и 2* - аппроксимации экспериментальных точек методом наименьших квадратов. Темные точки - максимумы, светлые - минимумы амплитуд. Штриховые линии - аппроксимации участков серии I(a, c, e, g) на предел 1/B=0 с фокусами (полюсами) Φ_{a-g} : а - InAs/AlSb Аппроксимации серии II(b, d, f)- иллюстрируют отрицательную температуру Дингла; б - Al_xGa_{1-x}As/GaAs

Это возмущение за счет межподзонного взаимодействия распространяется на всю 2D систему электронов. Наличие такого посредника между возмущающими примесями и основным массивом 2D электронов сглаживает остроту резонансной ситуации и приводит к плавности переходов от серии I(a, c, e, g) к серии II(b, d, f)на δ (1/B)_{Г=цпм}.

3.4. Природа затухания квантования Ландау в структурах InAs/AISb и Al_xGa_{1-x} As/GaAs. Из экспериментов по измерению осцилляций ШдГ в широком интервале магнитных полей и температур установлены магнитополевые зависимости нормированной амплитуды осцилляций зависимости (рисунок 4 а, б), что позволило оценить параметр, учитывающий нетепловое уширение уровней Ландау (температуру Дингла) [8] и оценить квантовое время рассеяния электронов в структурах InAs/AISb и Al_xGa_{1-x} As/GaAs.

Особенности столкновительного уширения в системе 2D электронов E_m и E_p подзон подробно изучены в [4-9] на примере потенциальной ямы треугольного профиля гетероперехода $Al_xGa_{1-x}As/GaAs$.

Уширение уровней Ландау, дополнительное к температурному, определяется внешним по отношению к 2D электронной системе возмущением: искажения потенциального рельефа дефектами гетерограницы, кулоновский потенциал легирующей примеси и др. Однако формирование собственно затухания квантования Ландау происходит по каналам внутри - и межподзонного электрон-электронного взаимодействия: $\tau_q (\tau_{ee}^{\text{int } ra},$

 $au_{ee}^{int\,er}$), $au_{ee}^{int\,ra}(au_{ee}^{m}, au_{ee}^{p})$, $au_{ee}^{int\,er}(au_{ee}^{m,p})$. Установлена определяющая роль межподзонного *e-e* взаимодействия в формировании уширения уровней Ландау.

Согласно методике [9] экспериментальные зависимости 1 и 2 аппроксимировались зависимостями 1* и 2*. Это позволило сложному процессу релаксации в системе 2D электронов E_m и E_p подзон в исследуемом интервале магнитных полей сопоставить гипотетический процесс с усредненным механизмом с уширением kT_D^m и *kT*^{*p*}_{*D*} для каждой из подзон размерного квантования, что не корректно. Тем не менее, определение температуры Дингла T_D^m и T_D^p аппроксимацией модулированных кривых прямыми, полученными после обработки методом наименьших квадратов позволяет выделить общие закономерности зависимости этого параметра от основных параметров наноструктуры: концентрации и температуры. Результаты представлены в таблице.

Анализ результатов позволяет установить следующее:

1) независимо от концентрации носителей в образцах InAs/AlSb температуры Дингла имеют достаточно большие значения (и малые времена релаксации, т.к. эти величины обратно пропорциональны) и значительно отличаются от соответствующих параметров 2D электронов в потенциальной яме гетероперехода Al_xGa_{1-x}As/GaAs [5], где T_D^m и T_D^p меньше 8 К. Это отличие связано с особенностями архитектуры гетероструктур и доминирующими механизмами релаксации электронов. Основной механизм, определяющий релаксацию 2D электронов в активном канале, это рассеяние 2D электронов на большие и малые углы при взаимодействии с потенциалом ионизированных примесей. Характерным масштабом, на котором 2D электроны чувствуют кулоновский потенциал, является длина экранирования l_D . В структуре InAs/AlSb ионы Te⁺ являются эффективными рассеивателями 2D электронов в квантовой яме InAs, так как находятся в пределах длины экранирования вследствие $l_D \approx L$, где L - расстояние от квантовой ямы до легирующей примеси. Для Al_xGa_{1-x}As/GaAs ионизированные примеси значительно удалены от 2D электронов в GaAs спейсером и $l_D < L$;

2) <u>зависимость T_D от концентрации 2D элек-тронов</u> в основной и возбужденной ПРК: с увеличением концентрации $n_m(n_p)$ величина T_D^m (T_D^p) заметно уменьшается. С ростом концентрации уменьшается эффективность кулоновского рассеяния, что приводит к увеличению квантового времени рассеяния носителей заряда и, следовательно, к уменьшению температуры Дингла. Для структуры $Al_xGa_{1-x}As/GaAs$ этот вывод также справедлив [5];

3) соотношения величин температур Дингла для основной T_D^m и возбужденной T_D^p подзон гетероструктуры InAs по отношению к арсенидгаллиевой системе. Для первой $T_D^m < T_D^p$, а для второй структуры $T_D^m \ge T_D^p$, что также связано отличиями в потенциальной форме квантовой ямы и соответствующим распределением функции плотности вероятности в подзонах размерного квантования [4, 8].

3.5. Времена внутри- и межподзонной релаксации в квантующих магнитных полях. Построение графика амплитуды, нормированной на конечную температуру опыта, от обратного магнитного поля $\delta_m (1/B)_{T=const}$ для исследованных образцов гетероструктуры InAs/AlSb во всем температурном диапазоне позволило уста-

Al _x Ga _{1-x} As образ.	n_m / n_p , 10^{12} cm^{-2}	T_D^m / T_D^p , K	$ au_q^m / au_q^p, \ 10^{-13} \mathrm{c}$
19	1.04±0.01	6.2±0.05	1.95±0.05
	/0.07±0.005	/2.1±0.01	/5.77±0.05
18	1.00±0.01	7.8±0.05	1.55±0.05
	/0.07±0.005	/1.7±0.01	/7.10±0.05
15	0.94±0.01	5.1±0.05	2.37±0.05
	/0.04±0.005	/2.7±0.01	/4.48±0.05
17	1.10±0.01	4.6±0.05	2.63±0.05
	/0.10±0.005	/1.4±0.01	/8.65±0.05
InAs/AlSb № серий образ.	n_m / n_p , 10 ¹² см ⁻²	$\frac{T_D^m}{K} / \frac{T_D^p}{K},$	$ au_q^m / au_q^p$, 10 ⁻¹⁴ c
1	0.61±0.05	14.6±1.2	8.3±0.5
	/-	/-	/-
2	1.8±0.1	19.4±1	6.2±0.4
	/0.61±0.05	/24±1.3	/5.0±0.5
3	2.7±0.15	17.0±0.5	7.1±0.3
	/1.1±0.1	/21±1	/5.8±0.4
4	3.6±0.15	9.7±0.3	12.0±0.2
	/0.62±0.05	/22±1.5	/5.5±0.7

новить идентичность характера зависимостей. Данные о том, что в других структурах (в частности, $Al_xGa_{1-x}As/GaAs$) наблюдался осциллирующий вид зависимости $\delta_m(1/B)_{T=const}$, нам не-известны.

Наблюдаемые зависимости на рисунке 4, а, б позволяют выявить роль внутри- и межподзонных е-е взаимодействий в формировании столкновительного уширения.

Согласно концепции, развитой в [5], на участках a, ..., g к уровню Ферми с ростом магнитного поля подтягиваются N_m и N_p уровня Ландау. При резонансном пересечении N_m и N_p уровней и уровня Ферми резко возрастает межподзонное *e-e* взаимодействие, что приводит к участкам b, d, fи h на зависимости δ (I/B)_{T=const}. На участках, аппроксимированных прямыми b, d, f, затухание квантования Ландау определяет время релаксации τ_q внутриподзонного е-е взаимодействия:

$$1/\tau_q = 1/\tau_{ee}^m + 1/\tau_{ee}^p.$$
 (5)

В условиях, близких к резонансам, на участках *a*, *c*, *e*, *g* $B_m = B_p$ к внутриподзонному *e-e* взаимодействию (5) примешивается межподзонное *e-e* взаимодействие. Столкновительное уширение определяется соотношением

$$1/\tau_{a} = 1/\tau_{ee}^{m} + 1/\tau_{ee}^{p} + 1/\tau_{ee}^{mp}.$$
 (6)

Это приводит к аномальной зависимости δ (I/B)_{T=const.}

Энергетическая диаграмма сканирования уровня Ферми ξ_F уровнями N_m и N_p Ландау E_m и E_p подзон размерного квантования с изменени-

ем магнитного поля идентична случаю, рассмотренному в [7] для арсенид-галлиевой гетеросистемы. По наклону участков I (a, c, e, g) нами найдены времена столкновительного уширения (рисунок 5).

Так же, как и для арсенид-галлиевой гетеросистемы [4], наблюдается уменьшение времени столкновительного уширения с возрастанием магнитного поля. Это уменьшение τ_q с ростом *B* связано с примешиванием к внутриподзонному *e-е* взаимодействию (на участках серии I τ_q определяется τ_{ee}^m и τ_{ee}^p) другого механизма. Об этом свидетельствует смещение полюсов $\Phi_{a,c,e,g}$ в пределе 1/*B*=0. Таким механизмом может быть электрон-фононное взаимодействие [6, 9].

Рисунок 5 – Зависимость времени релаксации на участках *a, c, e* от магнитного поля для образцов с разной концентрацией *n*_s·10¹² см⁻²: *1*- 2.4, *2* - 3.6

Принципиальным отличием результатов, представленных на рисунке 4, а от рисунка 4, б является наличие падающих участков на зависимости δ (I/B)_{T=const} в резонансных магнитных полях. Это обстоятельство позволяет высказать предположение о локальности понятия температуры Дингла: на участках серии II (*b*, *d*, *f*) температура Дингла становится отрицательной. По данным рисунка 4, а невозможно оценить времена межподзонного взаимодействия подобно тому, как это сделано в [9] с использованием выражений (5) и (6).

4. Выводы. Анализ экспериментов низкотемпературного магнитотранспорта, выполненный на образцах гетероструктур InAs/AlSb и Al_xGa_{1-x} As/GaAs c 2D электронами при заполнении двух подзон размерного квантования, позволил выявить основные закономерности релаксационных процессов в 2D электронной системе со структурой энергетического спектра и пространственного распределения электронной плотности. Отмечаются высокие по отношению к арсенид-галлиевой гетеросистеме значения температуры Дингла. Усиление затухания квантования Ландау обусловлено архитектурой слоев гетероструктуры, а именно: δ -*Te* слой находится на расстоянии в пределах длины экранирования от гетерограницы InAs/AISb. Это и обеспечивает эффективность кулоновского потенциала в рассеянии 2D электронов, а симметричность распределения электронной плотности по оси гетероструктуры создает одинаковые условия для рассеивания на кулоновском потенциале как n_m , так n_p электронов.

Существенно различается интенсивность межподзонного взаимодействия в структурах. Магнитное поле в резонансной ситуации создает условия для столь сильного межподзонного взаимодействия, что на зависимости δ (I/B)_{T=const} наблюдаются падающие участки, что соответствует T_D <0. Параметр, характеризуемый температурой Дингла, носит (для всей зависимости δ (I/B)_{T=const} локальный характер.

В целом, анализ экспериментов низкотемпературного магнитотранспорта гетеросистемы InAs/AISb с 2D электронами в квантовой яме выявил идентичность релаксационных процессов в квантующих магнитных полях с гетеросистемой Al_xGa_{1-x}As/GaAs с сильным межэлектронным взаимодействием.

Библиографический список

1. *Kadushkin V.I., Tsahhaev F.M.* Intersubband Relaxation of 2D Electrons in AlGaAs(Si)/GaAs Heavily Doped Heterojunction // Phys. Low-Dim. Struct. 2000. Vol. 1/2, p. 93-112

2. Sadofyev Yu.G., Ramamoorthy A., Naser B., Bird J.P., Johnson S.R., Zhang Y-H. Large g-factor enhancement in high-mobility InAs/AlSb quantum wells// Appl.Phys. Lett. 2002. Vol. 81, p. 1833 -1835

3. Кадушкин В.И., Афанасова М.М. Низкотемпературный магнитотранспорт вырожденных 2D и 3D электронов// Рязанский государственный университет им. С.А. Есенина.-Рязань, 2006.-21 с.,ил., библ.20.-Рус.-Деп. в ВИНИТИ 17.05.06 №667-В2006

4. *Кадушкин В.И.* Электрон- фононный фактор затухания квантования Ландау 2D электронов с тонкой структурой энергетического спектра //ФТП. 2004. Т. 38. С. 412 – 416

5. Кадушкин В.И. Особенности межэлектронного взаимодействия в потенциальной яме сильно легированного гетероперехода Al_xGa_{1-x}As(Si)/GaAs// ФТП. 2005. Т. 39. С. 242-247

6. *Coleridge P.T.* Small-angle scattering in two dimensional electron gas // Phys. Rev. B. 1991. Vol. 44, p. 3793-3801.

7. Kadushkin V.I., Dubois A.B., Gorbunova Yu.N., Tsahhaev F.M., Ustinov A.M. Intra and intersuband e-e interactions as a factor contributing of damping Landau Quantization in two-dimensional electron gas // Phys. Low-Dim. Struct. 2003. Vol. 9/10, p. 11-24. 8. *Dingle R.B.* Some magnetic properties of metals // Proc. Roy. Soc. A. 1952. Vol. 211, p. 517-525.

9. Афанасова М.М. Механизмы рассеяния в сильно легированных структурах $AlSb(\delta - Te^+)/$

/InAs/AlSb($\delta - Te^+$) с вырожденным 2D электронным газом// Межвузовский сборник научных трудов. Электроника. 2006. С 108-121.