А.А. Фефелов, А.И. Улитенко, А.Ф. Маннанов РЕШЕНИЕ МЕТОДОМ ГРАНИЧНЫХ ЭЛЕМЕНТОВ ЗАДАЧИ О РАСПРЕДЕЛЕНИИ ТЕМПЕРАТУРЫ В ПРИЗМАТИЧЕСКОМ СТЕРЖНЕ ПРИ ЗАДАННЫХ ГРАНИЧНЫХ УСЛОВИЯХ ПЕРВОГО И ТРЕТЬЕГО РОДА

Рассмотрены этапы численной реализации метода граничных элементов при решении классической задачи о распределении температуры в призматическом стержне постоянного сечения. Проведено сравнение полученных результатов с теоретическим решением задачи, а также с данными численного моделирования методом конечных элементов в среде SolidWorks/CosmosWorks. Анализ результатов позволяет говорить о более высокой точности расчета температуры при использовании метода граничных элементов.

Введение.

В настоящее время уровень развития вычислительной техники позволяет исследователю решать с помощью ЭВМ самые разнообразные прикладные задачи математической физики. Хотя, как и ранее, эксперимент остается решающим критерием правильности того или иного конструкторского решения, возможности численного анализа различных физических процессов, предоставляемые современными программными продуктами таковы, что позволяют получать решения, достаточно хорошо согласующиеся с результатами опыта.

Одним из эффективных методов решения широкого класса задач математической физики является метод конечных элементов (МКЭ). Благодаря своим особенностям (однотипность формы конечных элементов, большое число нулевых элементов глобальной матрицы и др.) данный метод является весьма удобным для численной реализации на ЭВМ. Сегодня абсолютное большинство программных пакетов, предлагаемых различными разработчиками специализированного программного обеспечения для инженерных расчетов, в том числе и широко известные пакеты прикладных программ SolidWorks/CosmosWorks и ANSYS в качестве математического аппарата используют именно МКЭ.

Вместе с тем для решения достаточно широкого круга задач, описываемых дифференциальными уравнениями Лапласа ($\Delta U(M) = 0$) или Пуассона ($\Delta U(M) + f(M) = 0$), где

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} -$$
оператор Лапласа, $U(M) -$

функция, дважды непрерывно дифференцируемая на замыкании $\overline{V} = V \cup S$ области V, ограникусочно-гладкой поверхностью ченной f(M) – заданная на \overline{V} функция, M – точка, такая, что $M \in \overline{V}$ весьма эффективным является применение метода граничных элементов (МГЭ). В отличие от МКЭ, численная реализация которого связана с необходимостью аппроксимации искомой функции U(M) не только на границе, но и в самой области, метод граничных элементов позволяет получить решение в любой точке области V, основываясь лишь на информации о значениях функции или ее производных на границе этой области. Таким образом, размерность решаемой задачи может быть понижена на единицу. Есть и другие особенности, выгодно отличающие МГЭ от МКЭ при решении указанного типа задач. В частности, МГЭ удобно применять, если по известным значениям U(M) на границе S необходимо найти значение этой функции в точке, находящейся в области Ω, являющейся внешней по отношению к области И (при этом в Ω должно быть справедливо уравнение Лапласа или Пуассона).

Практическая реализация как МКЭ, так и МГЭ тесно связана с проблемой построения расчетной сетки в области, если используется МКЭ, или на ее границе, если применяется МГЭ. Известно [1], что плоская область всегда может быть разбита на подобласти треугольной формы, причем так, что треугольники не будут наклады-

ваться друг на друга. С другой стороны поверхность любого объемного тела может быть аппроксимирована набором плоских фигур. Таким образом, задача построения на поверхности сетки треугольных элементов (триангуляция поверхности) может быть сведена к задаче триангуляции плоской области. В настоящее время разработаны эффективные и надежные алгоритмы триангуляции плоских областей, имеющих достаточно сложную геометрию (острые углы, вогнутости, внутренние вырезы и т.п.). В связи с этим применение описанного подхода к построению триангуляции на поверхности объемного тела гарантирует получение желаемого результата - сетки граничных элементов. Далее рассматриваются этапы численной реализации МГЭ при решении классической тепловой задачи о распределении температуры в призматическом стержне с заданными на его поверхностях граничными условиями (ГУ). Данные численного анализа рассматриваемой задачи, полученные с помощью МГЭ, сравниваются с данными аналогичного моделирования, проведенного методом конечных элементов в среде CosmosWorks. Оба численных решения сравниваются с аналитическим решением задачи.

1. Постановка задачи.

Для определенности рассмотрим призматический стержень, имеющий форму прямоугольного параллелепипеда с геометрическими размерами *a*, *b* и *c* (см. рисунок 1).

Распределение температур внутри стержня в отсутствие внутренних источников теплоты описывается дифференциальным уравнением (ДУ) вида

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) = 0, \quad (1)$$

где λ - теплопроводность материала стержня, T = T(x, y, z) - температура.

При условии независимости коэффициента λ от температуры ДУ (1) переходит в уравнение Лапласа

$$\Delta T = 0. \tag{2}$$

Пусть на поверхности S₁ задано ГУ первого рода

$$T = T_0 = const , \qquad (3)$$

а на поверхностях S_2 , S_3 , S_4 , S_5 и S_6 заданы ГУ третьего рода

$$-\lambda \nabla T \cdot \mathbf{n} = \alpha \left(T_{\rm c} - T_{\rm m} \right), \tag{4}$$

где **n** - вектор нормали к поверхности S_2 , S_3 , S_4 , S_5 или S_6 , T_c - температура на этой поверхности, T_{*} - температура среды, омывающей рассматриваемую поверхность, α - коэффициент теплоотдачи. Требуется определить температуру стержня на поверхности S_6 .

2. Этапы численной реализации МГЭ 2.1. Триангуляция поверхности.

Результаты применения алгоритма триангуляции плоской области для построения расчетной сетки на поверхности стержня представлены на рисунке 2. Общее число треугольников *N* равно 4376. Время триангуляции 15 с (процессор Athlon XP64 3200+, память – два модуля DDR RAM 512 Gb).

Рисунок 2

2.2. Обратный ход МГЭ.

Переход от дифференциальных уравнений к интегральной формулировке задачи приводит к системе граничных интегральных уравнений вида [2]

$$\sum_{i=1}^{l} \int_{S_{i}} \left[q\left(p\right) \cdot \omega\left(p, M_{0}\right) - -T\left(p\right) \cdot \omega^{*}\left(p, M_{0}\right) \right] dS_{i}\left(p\right) = \theta(M_{0}) \cdot T\left(M_{0}\right),$$
(5)

где *i* – номер поверхности с заданным типом граничных условий, *I* – общее число таких поверхностей $q(p) = \nabla T \cdot \mathbf{n}$, $\theta(M_0) = 4\pi$, если точ-

ка $M_0(x,y,z) \in V$, и $\theta(M_0) = 2\pi$, если точка $M_0(x,y,z) \in S_i$,

$$\omega(p, M_0) = \frac{1}{r(p, M_0)}, \qquad (6)$$

$$\boldsymbol{\omega}^{*}(\boldsymbol{p},\boldsymbol{M}_{0}) = \left(\nabla \boldsymbol{\omega}(\boldsymbol{p},\boldsymbol{M}_{0}) \cdot \mathbf{n}\right), \quad (7)$$

 $r(p, M_0)$ - расстояние между точками $p \in S_i$ и M_0 , **n** - вектор внешней нормали к элементу поверхности dS_i .

Триангуляция поверхности S_i позволяет представить ее совокупностью треугольных ГЭ $S_{i,n}$, $n = 1, N_i$, где N_i - общее число элементов поверхности S_i . Теперь согласно МГЭ в пределах каждого ГЭ с номером n функции q(p) и T(p) могут быть заменены некоторыми постоянными значениями q_n и T_n . Тогда (5) примет вид

$$\sum_{i=1}^{I} \left\{ \sum_{n=1}^{N_{i}} q_{n} \int_{S_{i,n}} \omega(p, M_{0}) dS_{i,n} - \sum_{n=1}^{N_{i}} T_{n} \int_{S_{i,n}} \omega^{*}(p, M_{0}) dS_{i,n} \right\} = \theta(M_{0}) \cdot T(M_{0}),$$
(8)

Из (8) видно, что для расчета значения $T(M_0)$ необходимо знать значения q_n и T_n , соответствующие каждому из N треугольников триангуляции.

Определение q_n и T_n производится на так называемом «обратном ходе» МГЭ. При этом точка M_0 последовательно совмещается с узловой точкой p_m m-го треугольника ($m = \overline{1, N}$), то есть полагается $M_0 = p_m$ и $T(p_m) = T_m$. Интегралы, входящие в (8), принимают вид

$$I_{\rm nm} = \int_{S_{\rm i,n}} \omega(p, p_{\rm m}) dS_{\rm i,n} , \qquad (9)$$

$$I_{\rm nm}^* = \int_{S_{\rm i,n}} \omega^* (p, p_{\rm m}) dS_{\rm i,n} .$$
 (10)

Вид уравнения (8) будет зависеть от типа граничных условий, соответствующих рассматриваемому ГЭ с номером m. В частности, рассматривая правую часть (8), можно записать, что:

1) если на участке поверхности, соответствующей *т*-му ГЭ, заданы ГУ 1-го рода, то

$$\theta(p_{\rm m})T(p_{\rm m}) = 2\pi T_{\rm m}; \qquad (11)$$

2) если на участке поверхности, соответствующей *m*-му ГЭ, заданы ГУ 3-го рода, то согласно (4)

$$\theta(p_{\rm m})T(p_{\rm m}) = 2\pi T_{\rm m} = 2\pi \left(T_{\rm w,i} - \frac{\lambda}{\alpha}q_{\rm m}\right), \quad (12)$$

где $q_{\rm m} = (\nabla T \cdot \mathbf{n})_{\rm m}$ - производная от температуры по нормали к поверхности *m*-го ГЭ в его узловой точке $p_{\rm m}$, $T_{\rm ж,i}$ - температура жидкости, омывающей поверхность S_i . Левая часть (8) с учетом (4) также должна быть переписана, а именно: в случае, когда индекс *i* соответствует поверхности с ГУ третьего рода выражение в фигурных скобках принимает следующий вид

$$\sum_{n=1}^{N_{i}} q_{n} I_{nm} - \sum_{n=1}^{N_{i}} T_{n} I_{nm}^{*} =$$

$$= \sum_{n=1}^{N_{i}} q_{n} I_{nm} - \sum_{n=1}^{N_{i}} \left(T_{m} - \frac{\lambda}{\alpha} q_{n} \right) I_{nm}^{*} =$$
(13)
$$= \sum_{n=1}^{N_{i}} q_{n} \left(I_{nm} + \frac{\lambda}{\alpha} I_{nm}^{*} \right) - \sum_{n=1}^{N_{i}} T_{m} I_{nm}^{*}.$$

Таким образом, при обратном ходе МГЭ уравнение (8) переходит в систему линейных алгебраических уравнений (СЛАУ), включающую в себя уравнения двух видов (по числу вариантов ГУ на поверхностях), а именно:

$$\sum_{i=1}^{I_{IY1}} \left\{ \sum_{n=1}^{N_i} q_n I_{nm} - \sum_{n=1}^{N_i} T_n I_{nm}^* \right\} + \sum_{i=1}^{I_{IY3}} \left\{ \sum_{n=1}^{N_i} q_n \left(I_{nm} + \frac{\lambda}{\alpha} I_{nm}^* \right) - \sum_{n=1}^{N_i} T_{mi} I_{nm}^* \right\} = 2\pi T_m,$$
(14)

И

$$\sum_{i=1}^{I_{IY1}} \left\{ \sum_{n=1}^{N_{i}} q_{n} I_{nm} - \sum_{n=1}^{N_{i}} T_{n} I_{nm}^{*} \right\} + \sum_{i=1}^{I_{IY3}} \left\{ \sum_{n=1}^{N_{i}} q_{n} \left(I_{nm} + \frac{\lambda}{\alpha} I_{nm}^{*} \right) - \sum_{n=1}^{N_{i}} T_{x,i} I_{nm}^{*} \right\} = (15)$$
$$= 2\pi \left(T_{x,i} - \frac{\lambda}{\alpha} q_{m} \right),$$

где $I_{\Gamma Y1}$ - число поверхностей с ГУ 1-го рода, $I_{\Gamma Y2}$ - число поверхностей с ГУ 2-го рода.

Данная СЛАУ может быть представлена в матричной форме в виде

$$(II^* - R) \cdot QT = \overline{Q}T .$$
 (16)

Матрица QT размера $N \times 1$ - вектор-столбец переменных q_n и T_n , подлежащих определению. При этом $QT_m = q_m$, если *m*-му ГЭ соответствуют граничные условия первого рода и $QT_m = T_m$, если *m*-му ГЭ соответствуют граничные условия третьего рода. Матрица II^* размера $N \times N$ матрица коэффициентов при переменных q_n и T_n в рассматриваемой СЛАУ. Причем $II_{nm}^* = I_{nm}$, если *n*-му ГЭ соответствуют ГУ первого рода и $II_{nm}^{*} = I_{nm} + \frac{\lambda}{\alpha}I_{nm}^{*}$, если *п*-му ГЭ соответствуют ГУ третьего рода. Матрица *R* - диагональная матрица размера *N*×*N*. Ее диагональные элементы таковы, что $R_{mm} = 0$, если граничному элементу с номером *m* соответствуют ГУ первого рода и $R_{mm} = -2\pi \frac{\lambda}{\alpha}$, если имеют место ГУ третьего рода. Матрица ΘT размера *N*×1 - вектор-столбец свободных членов. Элементы мат-

если *т*-му ГЭ соответствуют ГУ 1-го рода;

2)
$$QT_{\rm m} = \sum_{i=1}^{I_{\rm TYI}} \sum_{n=1}^{N_{\rm i}} T_{\rm n} I_{\rm nm}^* + \sum_{i=1}^{I_{\rm TY3}} \sum_{n=1}^{N_{\rm i}} T_{\rm m,i} I_{\rm nm}^* + 2\pi T_{\rm m,i},$$

если *т*-му ГЭ соответствуют ГУ 3-го рода.

СЛАУ (16) может быть решена методом Гаусса. Однако для этого необходимо сначала вычислить все $N \times N$ интегралов I_{nm} и I_{nm}^* .

При численной реализации МГЭ интегралы I_{mm} оценивались по методике, изложенной в [3]. Интегралы I_{nm} и I_{nm}^* при $n \neq m$ оценивались с помощью стандартных квадратур Гаусса с 20-тью узлами на интервале интегрирования. При оценке I_{mm}^* можно заметить, что поскольку треугольный граничный элемент является плоским, то $I_{mm}^* = 0$.

Касаясь этапа оценки интегралов I_{nm} и I_{nm}^* , необходимо отметить, что здесь имеет место проблема, отмеченная в [4] и связанная с квазисингулярным поведением подынтегральных функций при приближении точки $p_{\rm m}$ к узловой точке p_n *n*-го ГЭ. Эту трудность в принципе можно обойти, используя квадратурные формулы с большим числом узлов (до сотни и более). Однако применение такого подхода крайне нежелательно, поскольку быстродействие метода при этом сильно снижается. В настоящей работе при численной оценке таких квазисингулярных интегралов был проведен предварительный анализ вида подынтегральных функций, определены участки их наиболее резкого изменения и на этих участках введено местное уплотнение сетки квадратурной формулы. Это позволило ускорить работу алгоритма.

2.3. Прямой ход МГЭ.

На данном этапе по формуле

$$\sum_{i=1}^{I} \left\{ \sum_{n=1}^{N_{i}} q_{n} \int_{S_{i,n}} \omega(p, M_{0}) dS_{i,n} - \sum_{n=1}^{N_{i}} T_{n} \int_{S_{i,n}} \omega^{*}(p, M_{0}) dS_{i,n} \right\} = 4\pi T(M_{0})$$
(17)

производился расчет значения температуры на торцевой поверхности стержня S_6 . При $T_0 = 400$ K, $\lambda = 37$ Вт/м·К, $\alpha = 1$ Вт/м²·К и $T_* = 300$ K значение температуры на поверхности S_6 оказалось равным 334,552 К. Линейные размеры объекта: a = b = 1 м, c = 5 м.

3. Сравнение решения, полученного методом граничных элементов, с теоретическим решением и решением, полученным МКЭ в среде SolidWorks/CosmosWorks.

3.1. Теоретический расчет.

Теоретическое решение для распределения температуры в стержне при рассматриваемых ГУ имеет вид [5]

$$T(x) = T_{x} + \left(T_{0} - T_{x}\right) \frac{\left(1 - \frac{\alpha}{m\lambda}\right)e^{mx}e^{-ml} + \left(1 + \frac{\alpha}{m\lambda}\right)e^{-mx}e^{ml}}{e^{ml} + e^{-ml} + \frac{\alpha}{m\lambda}\left(e^{ml} - e^{ml}\right)}, \quad (18)$$

где $m = \sqrt{\frac{\alpha U}{\lambda F}}$, U, F – периметр и площадь поперечного сечения стержня соответственно, l –

длина стержня, x – текущая координата. При x = l расчет по (18) дает T = 334,611 К.

3.2. Численное моделирование в среде SolidWorks/CosmosWorks.

Моделирование проводилось при грубом, среднем и высоком качестве сетки КЭ. Грубая сетка соответствовала разбиению расчетной области на 775 КЭ, сетка среднего качества соответствовала 6450 КЭ, а сетка высокого качества разбивала объем стержня на 58241 КЭ. В первом случае (грубая сетка) рассчитанное значение температуры на поверхности S₆ оказалось равным 334,8 К, во втором случае - 334,871 и в последнем случае (число конечных элементов сетки 58241) значение температуры оказалось равным 334,875 К. Таким образом, ошибка расчета здесь составила $\varepsilon = 5,484 \cdot 10^{-4}$ (лучшее приближение). МГЭ при рассчитанном значении 334,552 К дает погрешность $\varepsilon = 1,763 \cdot 10^{-4}$, то есть примерно в 3 раза меньше.

4. Выводы.

Приведенные данные численного моделирования показывают, что при решении методом граничных элементов достаточно часто встречающихся задач конвективного теплообмена с ГУ 3-го рода может быть достигнуто хорошее соответствие результатов численного моделирования и теоретического расчета.

В данной статье были рассмотрены этапы реализации МГЭ при заданных на поверхностях объекта ГУ 1-го и 3-го рода. Однако приведенные математические выкладки нетрудно обобщить на случай наличия на каком-либо участке поверхности тела также и ГУ 2-го рода (постоянная плотность теплового потока на этом участке).

Библиографический список

1. Скворцов А.В. Алгоритмы построения триангуляции с ограничениями // Вычислительные методы и программирование. 2002. Т.3. 2. Власова Е.А., Зарубин В.С., Кувыркин Г.Н. Приближенные методы математической физики: Учеб. для вузов / Под ред. В.С. Зарубина, А.П. Крищенко. –М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. – 700 с. (Сер. Математика в техническом университете; Вып. XIII).

3. Фефелов А.А. Применение математического аппарата метода граничных элементов для решения задач теплопроводности // Вестник РГРТА. Вып. 16 / Рязан. гос. радиотехн. акад. Рязань, 2005.

4. *Трубицын А.А.* Вычисление сингулярных интегралов методом граничных элементов // Журнал вычислит. матем. и матем. физики. – 1995. Т. 35. № 4.

5. *Михеев М.А., Михеева И.М.* Основы теплопередачи. Изд. 2-е, стереотип. М.: Энергия, 1977. – 344 с. с ил.