УДК 621. 387.322

В.А. Коротченко, Д.В. Суворов САМОСОГЛАСОВАННАЯ МОДЕЛЬ ФОРМИРОВАНИЯ ОБЪЕМНОГО РАЗРЯДА І. ФИЗИКО-МАТЕМАТИЧЕСКАЯ ОСНОВА МОДЕЛИ

Представлена модель газоразрядных процессов, включающая самосогласованный расчет перераспределения потенциала в промежутке совместно с электродинамикой внешней цепи и вычисление фотоэмиссии электронов из катода дифференцированно для каждой спектральной линии излучения разряда. Описаны особенности модели, обеспечивающие высокую стабильность и экономичность расчета. Приведены результаты моделирования для азотного лазера.

Введение

Объемный разряд широко используется в системах накачки импульсных газовых лазеров [1]. Разряд характеризуется малым (наносекунды) временем формирования, большой степенью перенапряжения (100 - 400 %) при высоких значениях напряжении зажигания (десятки киловольт) и амплитуды тока. В таких условиях возможности экспериментального исследования ограничены и для изучения физических процессов широко применяется численный эксперимент [2-5, 8].

К настоящему времени существующие модели объемного разряда основаны на гидродинамическом приближении, в рамках которого учитываются ионизация электронным ударом, перемещение электронов и ионов под действием поля, ион-электронная эмиссия на катоде, влияние пространственного заряда на напряженность поля. Физические процессы в разряде искусственно согласуются с электродинамикой внешней цепи путем введения некоторой приближенной функции, описывающей изменение анодного напряжения во времени с учетом параметров электрической цепи [2, 3]. Необходимость такого допущения определяется неустойчивостью численного расчета по классической схеме, в которой электрическое поле вычисляется решением уравнения Пуассона. Проблема достижения самосогласования модели является основной для численного изучения объемного разряда.

Для расчета эмиссии электронов из катода под действием излучения разряда в моделях обычно используется некоторый интегральный коэффициент фотоэмиссии, значение которого варьируется в широких (10⁻⁴ - 10⁻⁶) пределах. Более точный расчет должен, очевидно, учитывать фотоэмиссию электронов отдельно для каждой линии излучения разряда и квантовый выход материала катода для этой спектральной линии.

В настоящей работе описывается полностью самосогласованная модель объемного разряда, в которой динамика перераспределения потенциала в промежутке рассчитывается согласованно с электродинамикой внешней цепи, а фотоэмиссия электронов из катода вычисляется дифференцированно для каждой спектральной линии.

1. Гидродинамическое приближение

Образование, перемещение и гибель электронов и k типов ионов для разрядного промежутка длиной d описываются системой одномерных уравнений непрерывности, аналогичной используемой в газовой динамике [6]:

$$\frac{\partial n_e}{\partial t} + div \Gamma_e = n_e \sum_{j=1}^k v_{ij} - n_e \sum_{j=1}^k \beta_j n_{pj} + \theta_{add},$$

$$\frac{\partial n_{p1}}{\partial t} + div \Gamma_{p1} = v_{i1} n_e - \beta_1 n_e n_{p1},$$

$$\frac{\partial n_{p2}}{\partial t} + div \Gamma_{p2} = v_{i2} n_e - \beta_2 n_e n_{p2}$$

$$\frac{\partial n_{pk}}{\partial t} + div \Gamma_{pk} = v_{ik} n_e - \beta_k n_e n_{pk}.$$
(1)

Здесь Γ_e и Γ_p – плотности потоков частиц (электронов и ионов), n_e и n_p – их концентрации, v_i – частота ионизации, β – коэффициент ион-электронной рекомбинации, θ_{add} – интенсивность начальной ионизации, которая входит только в первое уравнение системы (1), поскольку при начальной предыионизации промежутка образуются лишь ионы газовых примесей [1]. Выражения для плотностей потоков заряженных частиц в общем случае записываются в виде

$$\Gamma_{e} = -n_{e} \mu_{e} E - D_{e} \operatorname{grad} n_{e},$$

$$\Gamma_{p1} = n_{p1} \mu_{p1} E - D_{p1} \operatorname{grad} n_{p1},$$

$$\dots$$

$$\Gamma_{pk} = n_{pk} \mu_{pk} E - D_{pk} \operatorname{grad} n_{pk}.$$
(2)

Здесь μ_e и μ_p – подвижности, D_e и D_p – коэффициенты диффузии, E – напряженность электрического поля. Время формирования объемного разряда мало (единицы наносекунд), и поэтому диффузной составляющей потока можно пренебречь:

$$\Gamma_{e} = -n_{e} \mu_{e} E ,$$

$$\Gamma_{p1} = n_{p1} \mu_{p1} E ,$$

$$\dots$$

$$\Gamma_{pk} = n_{pk} \mu_{pk} E .$$
(3)

Коэффициенты ион-электронной рекомбинации в определены экспериментально и табулированы для каждого типа реакции, а член θ_{add} , описывающий дополнительную ионизацию, представляет собой некоторую функцию от времени, индивидуальную для каждой газоразрядной системы. Для чистых газов другие коэффициенты, входящие в гидродинамические уравнения (подвижности и частоты ионизации), могут быть получены из экспериментальных данных. В случае расчета газовой смеси эти коэффициенты необходимо вычислять на основе данных о сечениях взаимодействия частиц с электронами и функции распределения электронов по энергиям (ФРЭЭ). Для этой цели может быть использован свободно распространяемый пакет BOLSIG (Kinema Software & CPAT) [10], позволяющий вычислять ФРЭЭ, подвижность, коэффициент диффузии, частоты процессов взаимодействия молекул с электронами (упругих соударений, возбуждения, ионизации) и среднюю энергию электронов. Результаты расчета представляют собой табличные функции от приведенной напряженности поля. Программа использует набор сечений SIGLO Database (С) 1996 [10].

2. Граничные условия

Граничные условия для системы уравнений (1) определяются выражением для плотности электронного тока с катода j_{Σ}

$$j_{\Sigma} = e \, n_e \, (0) \, \upsilon_{ek} = j_{exn} + \\ + \sum_{i=1}^k \left[\gamma_{ion}^i \, n_p^i \, \mu_p^i \, E_0 + \sum_{m=1}^{Z_i} \eta_m^i \, \frac{1}{\tau_m^i} \int_0^d g(x) \, n_m^{*i}(x) \, dx \right] \, (4)$$

и нулевыми значениями концентрации заряженных частиц на электродах (электроны исчезают на аноде, а ионы – на катоде):

$n_e(d) = 0, n_p(0) = 0.$

Уравнение плотности электронного тока с катода физически отражает рождение электронов на катоде в результате ион-электронной эмиссии (первое слагаемое в квадратных скобках) и фотоэмиссии с катода под действием излучения разряда (второе слагаемое в квадратных скобках). Здесь e – заряд электрона, $n_e(0)$, v_{ek} – концентрация и скорость вторичных электронов вблизи катода, *j*_{exn} – плотность электронного тока под действием внешнего ионизатора, γ_{ion} – коэффициент ион-электронной эмиссии, n_p – концентрация ионов вблизи катода, µ_p – их подвижность, E_0 – напряженность поля на катоде, g(x) – геометрический фактор (x – расстояние от катода), $n_{m}^{*}(x)$ – концентрация частиц газа в возбужденном состоянии *m*, τ_m – время жизни этого состояния, η_m – квантовый выход катода для спектральной линии, соответствующей излучательному переходу частицы из состояния m, Z – число рассматриваемых уровней частицы, излучательный переход из которых приводит к образованию фотонов с энергией, превышающей работу выхода катода, *d* – расстояние между электродами.

Геометрический фактор определяет, какая часть общего числа фотонов, излученных на расстоянии с координатой *x*, попадает на катод (поглощением фотонов газовой средой пренебрегаем). При плоской геометрии с шириной катода *H*, в условиях, когда все фотоны излучаются с линии, соединяющей центры электродов, значение фактора определяется выражением

$$g(x) = \frac{1}{\pi} \operatorname{arctg} \frac{H}{2x}.$$
 (5)

Интенсивность предыонизации θ_{add} во времени описывается разрывной функцией, с участком, имеющим форму распределения Гаусса:

$$\Theta_{add} = \begin{cases}
0, t < I_{st} \\
n_0 \left(\frac{6}{T_{ef}}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{6(t - T_{st} - 0.5T_{eff})}{T_{eff}}\right)^2\right), (6) \\
T_{st} \le t \le T_{st} + T_{eff} \\
0, t > T_{st} + T_{eff}
\end{cases}$$

где n_0 – конечная концентрация начальных электронов, T_{st} – время начала образования дополнительных электронов, T_{eff} – эффективная длительность импульса фотоионизации.

3. Расчет динамики электрических процессов во внешней цепи

Гидродинамические коэффициенты, входящие в уравнения непрерывности (1), являются функциями от приведенной напряженности электрического поля E/p (E – напряжённость, p – давление газа). Следовательно, для самосогласованного решения задачи формирования разряда необходим расчет динамики перераспределения электрического поля в промежутке. Поле определяется процессами во внешней цепи и накоплением зарядов внутри промежутка. Уравнения внешней цепи записываются в соответствии со схемой возбуждения разряда (рис. 1):

$$U_{Cs}(t) = I_{C}(t)R_{T}(t) + L1\frac{dI_{C}(t)}{dt} + U_{Cp}(t),$$

$$U_{Cp}(t) = I_{D}(t)R + L2\frac{dI_{D}(t)}{dt} + U_{a}(t), \quad (7)$$

$$U_{Cp}(t) = \frac{1}{Cp} \int (I_C(t) - I_D(t)) dt,$$

$$U_{Cs}(t) = U_{Cs}(0) - \frac{1}{Cs} \int I_C(t) dt$$
,

начальные условия:

$$U_{Cs}(0) = U_0, U_{Cp}(0) = 0,$$

где Cs, Cp – накопительная и обострительная емкости, U_{Cs} , U_{Cp} – напряжения на накопительной и обострительной емкостях, I_C – ток через накопительную емкость, U_a , I_D – напряжение и ток разрядного промежутка, L1 – суммарная индуктивность контура накачки, L2, R – индуктивность и сопротивление разрядного контура (паразитные), U_0 – напряжение на накопительной емкости в начальный момент времени.

Сопротивление R_T , определяемое параметрами коммутационного тиратрона, аппроксимировалось по формуле:

$$R_T(t) = 0.08 + \frac{1}{4 \cdot 10^7 t}, \qquad (8)$$

в соответствии с которой за 20 нс оно уменьшается до 0,08 Ом.

Рис. 1. Схема возбуждения объемного разряда: *SG* – разрядный промежуток; *Cs* и *Cp* – накопительная и обострительная ёмкости; *L1* и *L2* – паразитные индуктивности; *R_T* и *R* – сопротивления коммутационного тиратрона и контура накачки соответственно

4. Проблема устойчивости модели при расчете внешней цепи и динамики

электрического поля в промежутке

При численном моделировании газового разряда [2-5, 8, 9] распределение электрического поля в промежутке обычно вычисляют, решая уравнение Пуассона для одномерного случая:

$$\frac{\partial^2 U}{\partial x^2} = \frac{e}{\varepsilon_0} \Big(n_e(x) - n_p(x) \Big), \tag{9}$$

где U – потенциал, e – элементарный заряд, ε_0 – электрическая постоянная, n_e и n_p – концентрации электронов и ионов соответственно. Граничные условия: U(0) = 0 на катоде и U(d) = U(t) на аноде.

Такой подход формально справедлив, однако модель, включающая в себя совместное решение уравнений Пуассона и внешней цепи, устойчива лишь при небольших скоростях нарастания тока, соответствующих сравнительно малым давлениям газа в промежутке (формирование тлеющего разряда) [4, 5]. При больших давлениях (сотни Торр) и перенапряжениях (более 20 %), то есть в условиях быстрого роста тока разряда, становится значительным падение напряжения на индуктивности контура, что приводит к нестабильности расчета. По этой причине ряд исследователей прибегают к допущениям и искусственно задают разность потенциалов на электродах некоторой функцией от времени [2, 3], что снижает достоверность результатов моделирования.

Поясним причины возникновения нестабильности численного расчета. На стадии формирования разряда зависимость тока от приложенного к промежутку напряжения приближенно определяется соотношением

$$I_D(t) \approx e^{\beta(U_a)t}, \qquad (10)$$

где β(*Ua*) – некоторая функция напряжения, определяющая скорость ионизации.

В этих условиях погрешность вычисления тока разряда ΔI_D зависит от погрешности дискретизации анодного напряжения ΔU_a

$$I_D(t) + \Delta I_D(t) \approx e^{\beta (U_a + \Delta U_a)t}.$$
 (11)

Анодное напряжение само является функцией тока и его первой производной по времени:

$$U_{a}(t) = -\left(L2\frac{dI_{D}(t)}{dt} + RI_{D}(t)\right) + U_{Cp}(t).$$
(12)

Предположим, что в некоторый момент времени вычисленное значение тока за временной шаг равно $I_D(t)+\Delta I_D(t)$, где ΔI_D – погрешность вычисления тока, а I_D – истинное его значение. Потенциал анода на следующем временном шаге, вычисленный с погрешностью, в дискретной форме записывается выражением

$$U_{a}^{i+1} = U_{Cp}^{i+1} - \left(L2 \frac{(I_{D}^{i} + \Delta I_{D}^{i}) - (I_{D}^{i-1} + \Delta I_{D}^{i-1})}{\Delta t} + RI_{D}^{i} \right). (13)$$

В некоторый момент времени вследствие экспоненциального характера роста тока величина $(I_D{}^i-I_D{}^{i-1})$ будет соизмерима или меньше $(\Delta I_D{}^i - \Delta I_D{}^{i-1})$. Это приведет к значительному уменьшению величины анодного потенциала $U_a{}^{i+1}$, что, в свою очередь, приведет к резкому изменению тока $I_D{}^{i+1}$, и производная тока от времени на i+1 временном шаге будет отрицательной по знаку и большой по величине.

Вычисленное анодное напряжение на последующем i+1 временном шаге U_a^{i+2} будет значительно больше U_a^{i+1} , что приведет к ещё большим значениям тока и его производной по времени. Дальнейший расчет «коллапсирует» и приводит к ошибке переполнения [7]. Уменьшение временного шага снижает скорость накопления погрешности, но принципиально не изменяет причину возникновения неустойчивости.

Таким образом, в условиях резкого роста тока разряда в реальной электрической схеме (рис. 1) из-за влияния нарастающей погрешности дискретизации модель, основанная на решении уравнения Пуассона для вычисления напряженности поля внутри промежутка, является численно неустойчивой.

5. Использование уравнения сохранения полного тока для согласованного расчета динамики процессов во внешней цепи и в промежутке

В описываемой модели для самосогласованного и устойчивого вычисления электрического поля в промежутке использован нетривиальный подход, основанный на решении уравнения сохранения полного тока [6, 11]:

$$\frac{I_D}{S} = e \left(\Gamma_e + \Gamma_p \right) + \varepsilon_0 \frac{\partial E}{\partial t}, \qquad (14)$$

где I_D – ток разряда, S – площадь электродов, Γ_e , Γ_p – плотности потоков электронов и ионов. Первый член правой части уравнения (14) представляет собой плотность тока проводимости, второй – плотность тока смещения. Начальным условием для уравнения (14) является величина напряженности электрического поля в первый момент времени, задаваемая через напряжение на накопительной емкости.

В численной реализации этого подхода разрядный промежуток представляется эквивалентной электрической схемой, в которой каждый слой расчетной сетки замещается параллельным соединением источника тока и емкости. Источник тока соответствует первой компоненте полного тока разряда – току переноса, а емкость – второй компоненте – току смещения.

6. Пример результатов моделирования

На основе изложенного выше подхода моделировались газоразрядные процессы в азотном лазере с накачкой поперечным разрядом: давление – 760 Торр, межэлектродное расстояние – 1,5 см, состав газовой смеси – 95 % гелия и 5 % азота, величина обострительной емкости 2 нФ, накопительной – 10 нФ, индуктивность разрядного контура – 1 нГн, контура накачки – 200 нГн, сопротивление разрядного контура – 7 мОм, начальное напряжение накопительной емкости – 20 кВ, площадь электродов – 5,4·10⁻⁴ м², материал катода – медь, коэффициенты вторичной ион-электронной эмиссии для ионов гелия и азота – 0,02 и 0,05 соответственно, начальная концентрация электронов – 10^6 см⁻³.

На рис. 2 представлены полученные временные диаграммы тока и напряжения на промежутке, которые в основном соответствуют литературным экспериментальным данным.

Рис. 2. Напряжение на промежутке и ток разряда Приведённые результаты подтверждают возможность стабильного численного расчёта при высоких значениях скорости роста тока разряда (порядка 10¹² A/c) и степени перенапряжения (около 200 %).

Заключение

Представлены физико-математические основы самосогласованной модели объемного разряда. Основными особенностями модели являются расчет фотоэмиссии электронов с катода отдельно для каждой спектральной линии излучения разряда, учет динамики предыонизации промежутка и элекродинамических характеристик коммутатора.

Показано, что вычисление электрического поля внутри промежутка через уравнение сохранения полного тока обеспечивает самосогласованный расчет процесса формирования разряда совместно с электродинамикой внешней цепи. Это позволяет значительно более точно моделировать реальные физические процессы при высокой стабильности и экономичности расчета. Численная реализация модели будет приведена в следующей части работы.

Библиографический список

1. *Месяц Г.А., Осипов В.В., Тарасенко В.Ф.* Импульсные газовые лазеры. М.: Наука, 1991. 272 с.

2. Осипов В. В., Лисенков В. В. Формирование самостоятельного объемного газового разряда // ЖТФ. 2000. Т. 70. Вып.4. С. 27–33.

3. *S. Macheret, M. Shneider, R. Miles.* Modeling of Air Plasma Generation by Repetitive High-Voltage Nanosecond Pulses. // IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 3, JUNE 2002. P. 1301–1314.

4. Коротченко В. А., Чижиков А. Е., Иванов А.В. Начальная стадия тлеющего разряда в перенапряженном режиме // Изв. РАН, сер. Физическая, 2003. Т. 67. № 9. С. 1259 – 1262.

5. Коротченко В. А., Панкратов Е. И. Компьютерная модель развития тлеющего разряда в перенапряжённом режиме // Вестник РГРТА. Вып. 15, Рязань: РГРТА, 2004, С. 79 – 85.

6. Базелян. Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ. 1997.

7. Ращиков В.И., Рошаль А.С. Численные методы решения физических задач. СПб.: «Лань», 2005. 208 с.

8. *Bogaerts A., Gijbels R.* Numerical modelling of gas discharge plasmas for various applications // Vacuum V. 69. 2003. P. 37–52.

9. K. Kutasi, P. Hartmann, Z. Donko. Self-consistent modelling of glow discharges // PADEU 15, 147. 2005. P. 147–155.

10. http://www.siglo-kinema.com – Kinema Software & CPAT.

11. Дьяков А.Ф., Бобров Ю.К., Сорокин А.В., Юргеленас Ю.В. Физические основы электрического пробоя газов. Издательство МЭИ, 1999. – 400 с.